These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37504175)

  • 1. The Lift Effects of Chordwise Wing Deformation and Body Angle on Low-Speed Flying Butterflies.
    Fang YH; Tang CH; Lin YJ; Yeh SI; Yang JT
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations.
    Suzuki K; Aoki T; Yoshino M
    Phys Rev E; 2019 Jul; 100(1-1):013104. PubMed ID: 31499861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed.
    Abas MFB; Singh B; Ahmad KA; Ng EYK; Khan T; Sebaey TA
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 36134928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling wing-shape effects of wing-swept angle and aspect ratio on a forward-flying butterfly.
    Chang SK; Lin YJ; Hsu KL; Yang JT
    Phys Rev E; 2023 Jun; 107(6-2):065105. PubMed ID: 37464647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Aerodynamic Effect of an Alula-like Vortex Generator on a Revolving Wing.
    Chung PH; Chang PH; Yeh SI
    Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced lift and thrust via the translational motion between the thorax-abdomen node and the center of mass of a butterfly with a constructive abdominal oscillation.
    Chang SK; Lai YH; Lin YJ; Yang JT
    Phys Rev E; 2020 Dec; 102(6-1):062407. PubMed ID: 33466078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight.
    Bode-Oke AT; Zeyghami S; Dong H
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29950513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS.
    Dickinson M
    J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformable model of a butterfly in motion on the example of Attacus atlas.
    Kunicka-Kowalska Z; Landowski M; Sibilski K
    J Mech Behav Biomed Mater; 2022 Sep; 133():105351. PubMed ID: 35839632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.
    Tobalske B; Dial K
    J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae.
    Von Busse R; Hedenström A; Winter Y; Johansson LC
    Biol Open; 2012 Dec; 1(12):1226-38. PubMed ID: 23259057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the flight dynamics of take-off of a butterfly: experiments and CFD simulations for a cabbage white butterfly.
    Suzuki K; Nakamura M; Kouji M; Yoshino M
    Biol Open; 2022 Mar; 11(3):. PubMed ID: 35098995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
    Tobalske BW; Peacock WL; Dial KP
    J Exp Biol; 1999 Jul; 202 (Pt 13)():1725-39. PubMed ID: 10359676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of chordwise functionally graded flexural rigidity in flapping wings using a two-dimensional pitch-plunge model.
    Reade J; Jankauski M
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.