These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37504177)

  • 1. Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation.
    Cruz Ulloa C; Sánchez L; Del Cerro J; Barrientos A
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mixed-Reality Tele-Operation Method for High-Level Control of a Legged-Manipulator Robot.
    Cruz Ulloa C; Domínguez D; Del Cerro J; Barrientos A
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains.
    Shafiee M; Bellegarda G; Ijspeert A
    Nat Commun; 2024 Apr; 15(1):3073. PubMed ID: 38594288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Slip Detection for Quadruped Robots.
    Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.
    Zhu H; Wang D; Boyd N; Zhou Z; Ruan L; Zhang A; Ding N; Zhao Y; Luo J
    Front Robot AI; 2021; 8():724138. PubMed ID: 34765648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AQuRo: A Cat-like Adaptive Quadruped Robot With Novel Bio-Inspired Capabilities.
    Saputra AA; Takesue N; Wada K; Ijspeert AJ; Kubota N
    Front Robot AI; 2021; 8():562524. PubMed ID: 33912592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous Thermal Vision Robotic System for Victims Recognition in Search and Rescue Missions.
    Cruz Ulloa C; Prieto Sánchez G; Barrientos A; Del Cerro J
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of tail stiffness on a sprawling quadruped locomotion.
    Buckley J; Chikere N; Ozkan-Aydin Y
    Front Robot AI; 2023; 10():1198749. PubMed ID: 37692530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically inspired adaptive walking of a quadruped robot.
    Kimura H; Fukuoka Y; Cohen AH
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):153-70. PubMed ID: 17148054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensory-driven controller for quadruped locomotion.
    Ferreira C; Santos CP
    Biol Cybern; 2017 Feb; 111(1):49-67. PubMed ID: 28062927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.