BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37504205)

  • 1. Biomimetic Design of a Tendon-Driven Myoelectric Soft Hand Exoskeleton for Upper-Limb Rehabilitation.
    Silva RC; Lourenço BG; Ulhoa PHF; Dias EAF; da Cunha FL; Tonetto CP; Villani LG; Vimieiro CBS; Lepski GA; Monjardim M; Andrade RM
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.
    Yap HK; Lim JH; Nasrallah F; Yeow CH
    Front Neurosci; 2017; 11():547. PubMed ID: 29062267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Soft Hand Exoskeleton With a Novel Tendon Layout to Improve Stable Wearing in Grasping Assistance.
    Bagneschi T; Chiaradia D; Righi G; Popolo GD; Frisoli A; Leonardis D
    IEEE Trans Haptics; 2023; 16(2):311-321. PubMed ID: 37163404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and assessment of a hand assist device: GRIPIT.
    Kim B; In H; Lee DY; Cho KJ
    J Neuroeng Rehabil; 2017 Feb; 14(1):15. PubMed ID: 28222759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.
    Ma Z; Ben-Tzvi P; Danoff J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1323-1332. PubMed ID: 26595925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity.
    Ismail R; Ariyanto M; Setiawan JD; Hidayat T; Paryanto ; Nuswantara LK
    HardwareX; 2024 Jun; 18():e00537. PubMed ID: 38784668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles.
    Araujo RS; Silva CR; Netto SPN; Morya E; Brasil FL
    Front Neurosci; 2021; 15():661569. PubMed ID: 34248478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.
    Nycz CJ; Delph MA; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3889-92. PubMed ID: 26737143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A force augmenting exoskeleton for the human hand designed for pinching and grasping.
    Triolo ER; Stella MH; BuSha BF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1875-1878. PubMed ID: 30440762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention Enhancement for Exoskeleton-Assisted Hand Rehabilitation Using Fingertip Haptic Stimulation.
    Li M; Chen J; He G; Cui L; Chen C; Secco EL; Yao W; Xie J; Xu G; Wurdemann H
    Front Robot AI; 2021; 8():602091. PubMed ID: 34095238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fabric-based soft hand exoskeleton for assistance: the ExHand Exoskeleton.
    Maldonado-Mejía JC; Múnera M; Diaz CAR; Wurdemann H; Moazen M; Pontes MJ; Vieira Segatto ME; Monteiro ME; Cifuentes CA
    Front Neurorobot; 2023; 17():1091827. PubMed ID: 37396029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury.
    Yoo HJ; Lee S; Kim J; Park C; Lee B
    J Neuroeng Rehabil; 2019 Dec; 16(1):162. PubMed ID: 31888695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and experimental testing of a force-augmenting exoskeleton for the human hand.
    Triolo ER; BuSha BF
    J Neuroeng Rehabil; 2022 Feb; 19(1):23. PubMed ID: 35189922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.
    Lu Z; Tong KY; Shin H; Li S; Zhou P
    Front Neurol; 2017; 8():107. PubMed ID: 28373860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.
    Lu Z; Chen X; Zhang X; Tong KY; Zhou P
    Int J Neural Syst; 2017 Aug; 27(5):1750009. PubMed ID: 27873553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and low-cost humanoid hand powered by nylon artificial muscles.
    Wu L; Jung de Andrade M; Saharan LK; Rome RS; Baughman RH; Tadesse Y
    Bioinspir Biomim; 2017 Feb; 12(2):026004. PubMed ID: 28157716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.