These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37504213)
1. Drag Reduction by Fish-Scale Inspired Transverse Asymmetric Triangular Riblets: Modelling, Preliminary Experimental Analysis and Potential for Fouling Control. Hamilton BW; Tutunea-Fatan OR; Bordatchev EV Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504213 [TBL] [Abstract][Full Text] [Related]
2. Preliminary Assessment of Asymmetric Triangular Riblet Microstructures for Drag Deduction and Fouling Resistance: Numerical Modeling, Fabrication, and Performance Evaluation. Hamilton BW; Tutunea-Fatan RO; Bordatchev EV Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557508 [TBL] [Abstract][Full Text] [Related]
3. Preliminary Analysis of Hydrodynamic Drag Reduction and Fouling Resistance of Surfaces Inspired by the Mollusk Shell, Hamilton BW; Tutunea-Fatan OR; Bordatchev EV Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921243 [TBL] [Abstract][Full Text] [Related]
4. Modeling and optimization of shark-inspired riblet geometries for low drag applications. Martin S; Bhushan B J Colloid Interface Sci; 2016 Jul; 474():206-15. PubMed ID: 27131153 [TBL] [Abstract][Full Text] [Related]
5. Drag reduction: enticing turbulence, and then an industry. Spalart PR; McLean JD Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1556-69. PubMed ID: 21382831 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired surfaces for turbulent drag reduction. Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731 [TBL] [Abstract][Full Text] [Related]
7. Discovery of riblets in a bird beak (Rynchops) for low fluid drag. Martin S; Bhushan B Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354734 [TBL] [Abstract][Full Text] [Related]
8. Laser Ablating Biomimetic Periodic Array Fish Scale Surface for Drag Reduction. Chen D; Zhang B; Zhang H; Shangguan Z; Sun C; Cui X; Liu X; Zhao Z; Liu G; Chen H Biomimetics (Basel); 2024 Jul; 9(7):. PubMed ID: 39056856 [TBL] [Abstract][Full Text] [Related]
10. Low Air Drag Surface via Multilayer Hierarchical Riblets. Zhou Z; Wang S; Yan Z; Wang D; Deng J; He Y; Yuan W ACS Appl Mater Interfaces; 2021 Nov; 13(44):53155-53161. PubMed ID: 34709794 [TBL] [Abstract][Full Text] [Related]
11. Drag reduction using bionic groove surface for underwater vehicles. Zheng S; Liang X; Li J; Liu Y; Tang J Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898 [No Abstract] [Full Text] [Related]
12. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice? Zhu Y; Yang F; Guo Z Nanoscale; 2021 Feb; 13(6):3463-3482. PubMed ID: 33566874 [TBL] [Abstract][Full Text] [Related]
16. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Dean B; Bhushan B Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4775-806. PubMed ID: 20855320 [TBL] [Abstract][Full Text] [Related]
17. An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves. Liu W; Ni H; Wang P; Zhou Y Beilstein J Nanotechnol; 2020; 11():24-40. PubMed ID: 31976194 [TBL] [Abstract][Full Text] [Related]
18. Fluid drag reduction by penguin-mimetic laser-ablated riblets with yaw angles. Saito R; Yamasaki T; Tanaka H Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35797974 [TBL] [Abstract][Full Text] [Related]