These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 37504397)
21. Preparation and characterization of carboxymethyl chitosan/collagen peptide/oxidized konjac composite hydrogel. Zhang C; Yang X; Hu W; Han X; Fan L; Tao S Int J Biol Macromol; 2020 Apr; 149():31-40. PubMed ID: 31954789 [TBL] [Abstract][Full Text] [Related]
22. Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Wang L; Stegemann JP Acta Biomater; 2011 Jun; 7(6):2410-7. PubMed ID: 21345389 [TBL] [Abstract][Full Text] [Related]
23. Collagen-chitosan-laminin hydrogels for the delivery of insulin-producing tissue. McEwan K; Padavan DT; Ellis C; McBane JE; Vulesevic B; Korbutt GS; Suuronen EJ J Tissue Eng Regen Med; 2016 Oct; 10(10):E397-E408. PubMed ID: 24170711 [TBL] [Abstract][Full Text] [Related]
24. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
25. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. Song K; Qiao M; Liu T; Jiang B; Macedo HM; Ma X; Cui Z J Mater Sci Mater Med; 2010 Oct; 21(10):2835-42. PubMed ID: 20640914 [TBL] [Abstract][Full Text] [Related]
26. Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate-Chitosan-Collagen Scaffolds for Bone Tissue Engineering. Kolanthai E; Sindu PA; Khajuria DK; Veerla SC; Kuppuswamy D; Catalani LH; Mahapatra DR ACS Appl Mater Interfaces; 2018 Apr; 10(15):12441-12452. PubMed ID: 29589895 [TBL] [Abstract][Full Text] [Related]
27. Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. Kaur K; Paiva SS; Caffrey D; Cavanagh BL; Murphy CM Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112340. PubMed ID: 34474890 [TBL] [Abstract][Full Text] [Related]
28. Rational Design and Development of Anisotropic and Mechanically Strong Gelatin-Based Stress Relaxing Hydrogels for Osteogenic/Chondrogenic Differentiation. Dey K; Agnelli S; Re F; Russo D; Lisignoli G; Manferdini C; Bernardi S; Gabusi E; Sartore L Macromol Biosci; 2019 Aug; 19(8):e1900099. PubMed ID: 31298816 [TBL] [Abstract][Full Text] [Related]
29. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Zhou Y; Liang K; Zhao S; Zhang C; Li J; Yang H; Liu X; Yin X; Chen D; Xu W; Xiao P Int J Biol Macromol; 2018 Mar; 108():383-390. PubMed ID: 29225174 [TBL] [Abstract][Full Text] [Related]
30. Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: Physical properties and fibroblastic cell behavior. Mousavi S; Khoshfetrat AB; Khatami N; Ahmadian M; Rahbarghazi R Biochem Biophys Res Commun; 2019 Oct; 518(4):625-631. PubMed ID: 31447120 [TBL] [Abstract][Full Text] [Related]
31. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. Choi B; Kim S; Lin B; Wu BM; Lee M ACS Appl Mater Interfaces; 2014 Nov; 6(22):20110-21. PubMed ID: 25361212 [TBL] [Abstract][Full Text] [Related]
32. Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering. Li W; Long Y; Liu Y; Long K; Liu S; Wang Z; Wang Y; Ren L J Biomater Sci Polym Ed; 2014; 25(17):1962-72. PubMed ID: 25299624 [TBL] [Abstract][Full Text] [Related]
33. Chitosan-Nanocellulose Composites for Regenerative Medicine Applications. Khan A; Wang B; Ni Y Curr Med Chem; 2020; 27(28):4584-4592. PubMed ID: 31985365 [TBL] [Abstract][Full Text] [Related]
34. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Ko HF; Sfeir C; Kumta PN Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112 [TBL] [Abstract][Full Text] [Related]
35. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. Haberstroh K; Ritter K; Kuschnierz J; Bormann KH; Kaps C; Carvalho C; Mülhaupt R; Sittinger M; Gellrich NC J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):520-30. PubMed ID: 20225216 [TBL] [Abstract][Full Text] [Related]
36. Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Kara A; Tamburaci S; Tihminlioglu F; Havitcioglu H Int J Biol Macromol; 2019 Jun; 130():266-279. PubMed ID: 30797008 [TBL] [Abstract][Full Text] [Related]
37. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Peng W; Li D; Dai K; Wang Y; Song P; Li H; Tang P; Zhang Z; Li Z; Zhou Y; Zhou C Int J Biol Macromol; 2022 May; 208():400-408. PubMed ID: 35248609 [TBL] [Abstract][Full Text] [Related]
38. Chitosan based polymer/bioglass composites for tissue engineering applications. Vukajlovic D; Parker J; Bretcanu O; Novakovic K Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():955-967. PubMed ID: 30606607 [TBL] [Abstract][Full Text] [Related]