These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 37504498)

  • 1. A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC.
    Stüber AT; Coors S; Schachtner B; Weber T; Rügamer D; Bender A; Mittermeier A; Öcal O; Seidensticker M; Ricke J; Bischl B; Ingrisch M
    Invest Radiol; 2023 Dec; 58(12):874-881. PubMed ID: 37504498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases.
    Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M
    Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases.
    Taghavi M; Staal F; Gomez Munoz F; Imani F; Meek DB; Simões R; Klompenhouwer LG; van der Heide UA; Beets-Tan RGH; Maas M
    Cardiovasc Intervent Radiol; 2021 Jun; 44(6):913-920. PubMed ID: 33506278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm.
    Amini M; Hajianfar G; Hadadi Avval A; Nazari M; Deevband MR; Oveisi M; Shiri I; Zaidi H
    Clin Oncol (R Coll Radiol); 2022 Feb; 34(2):114-127. PubMed ID: 34872823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
    Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F
    Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.
    Wang Q; Nilsson H; Xu K; Wei X; Chen D; Zhao D; Hu X; Wang A; Bai G
    Eur J Radiol; 2024 Jun; 175():111459. PubMed ID: 38636408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment.
    Granata V; Fusco R; De Muzio F; Brunese MC; Setola SV; Ottaiano A; Cardone C; Avallone A; Patrone R; Pradella S; Miele V; Tatangelo F; Cutolo C; Maggialetti N; Caruso D; Izzo F; Petrillo A
    Radiol Med; 2023 Nov; 128(11):1310-1332. PubMed ID: 37697033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-weighted imaging-based radiomics model using automatic machine learning to differentiate cerebral cystic metastases from brain abscesses.
    Cui L; Qin Z; Sun S; Feng W; Hou M; Yu D
    J Cancer Res Clin Oncol; 2024 Mar; 150(3):132. PubMed ID: 38492096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators].
    Guo Z; Shao J; Zou X; Zhao Q; Qian P; Wang W; Huang L; Xue J; Xu J; Yang K; Zhou X; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2024 Jun; 36(3):251-258. PubMed ID: 38952311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].
    Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y
    Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392
    [No Abstract]   [Full Text] [Related]  

  • 12. A CT-based radiomics nomogram for predicting histopathologic growth patterns of colorectal liver metastases.
    Sun C; Liu X; Sun J; Dong L; Wei F; Bao C; Zhong J; Li Y
    J Cancer Res Clin Oncol; 2023 Sep; 149(12):9543-9555. PubMed ID: 37221440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation.
    Peng W; Jiang X; Zhang W; Hu J; Zhang Y; Zhang L
    Asian J Surg; 2023 Jul; 46(7):2689-2696. PubMed ID: 36351862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy.
    Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D
    Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning.
    Kang NG; Suh YJ; Han K; Kim YJ; Choi BW
    Korean J Radiol; 2021 Mar; 22(3):334-343. PubMed ID: 33236537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning.
    Xu X; Zhang J; Yang K; Wang Q; Chen X; Xu B
    Brain Behav; 2021 May; 11(5):e02085. PubMed ID: 33624945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to predict survival of patients with metastatic colorectal cancer.
    Mühlberg A; Holch JW; Heinemann V; Huber T; Moltz J; Maurus S; Jäger N; Liu L; Froelich MF; Katzmann A; Gresser E; Taubmann O; Sühling M; Nörenberg D
    Eur Radiol; 2021 Feb; 31(2):834-846. PubMed ID: 32851450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases.
    Taghavi M; Staal FC; Simões R; Hong EK; Lambregts DM; van der Heide UA; Beets-Tan RG; Maas M
    Acta Radiol; 2023 Jan; 64(1):5-12. PubMed ID: 34918955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.