These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37504574)

  • 1. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere.
    Visser NL; Turner SJ; Stewart JA; Vandegehuchte BD; van der Hoeven JES; de Jongh PE
    ACS Nano; 2023 Aug; 17(15):14963-14973. PubMed ID: 37504574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle growth in supported nickel catalysts during methanation reaction--larger is better.
    Munnik P; Velthoen ME; de Jongh PE; de Jong KP; Gommes CJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9493-7. PubMed ID: 25044071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the anti-sintering phenomenon on silica-supported nickel catalysts during CO
    Yang L; Pu T; Tian F; He Y; Zhu M
    J Environ Sci (China); 2024 Jun; 140():270-278. PubMed ID: 38331507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate - Retarded Growth of Metal Nanoparticles at Higher Rates.
    Turner SJ; Visser NL; Dalebout R; Wezendonk DFL; de Jongh PE; de Jong KP
    Small; 2024 Mar; ():e2401009. PubMed ID: 38552229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy.
    Yoshida K; Bright A; Tanaka N
    J Electron Microsc (Tokyo); 2012 Apr; 61(2):99-103. PubMed ID: 22366031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation.
    Hu KJ; Plant SR; Ellis PR; Brown CM; Bishop PT; Palmer RE
    J Am Chem Soc; 2015 Dec; 137(48):15161-8. PubMed ID: 26544914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ observation of the thermally induced growth of platinum-nanoparticle catalysts using high-temperature X-ray diffraction.
    Hasché F; Oezaslan M; Strasser P
    Chemphyschem; 2012 Feb; 13(3):828-34. PubMed ID: 22287294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coalescence and shape oscillation of Au nanoparticles in CO
    Yue S; Shen Y; Deng Z; Yuan W; Xi W
    Nanoscale; 2021 Nov; 13(43):18218-18225. PubMed ID: 34709260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of highly active Ni catalysts supported on carbon nanofibers for the hydrolytic hydrogenation of cellobiose.
    Frecha E; Remón J; Torres D; Suelves I; Pinilla JL
    Front Chem; 2022; 10():976281. PubMed ID: 36092678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-driven directional coalescence of silver nanoparticles.
    Yan S; Sun D; Gong Y; Tan Y; Xing X; Mo G; Chen Z; Cai Q; Li Z; Yu H; Wu Z
    J Synchrotron Radiat; 2016 May; 23(Pt 3):718-28. PubMed ID: 27140151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.
    Jendrzej S; Gökce B; Amendola V; Barcikowski S
    J Colloid Interface Sci; 2016 Feb; 463():299-307. PubMed ID: 26555960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QM/MD studies on graphene growth from small islands on the Ni(111) surface.
    Jiao M; Song W; Qian HJ; Wang Y; Wu Z; Irle S; Morokuma K
    Nanoscale; 2016 Feb; 8(5):3067-74. PubMed ID: 26785739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions.
    Ouyang R; Liu JX; Li WX
    J Am Chem Soc; 2013 Feb; 135(5):1760-71. PubMed ID: 23272702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis.
    Vogt C; Meirer F; Monai M; Groeneveld E; Ferri D; van Santen RA; Nachtegaal M; Unocic RR; Frenkel AI; Weckhuysen BM
    Nat Commun; 2021 Dec; 12(1):7096. PubMed ID: 34876582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol.
    Díaz JA; Díaz-Moreno R; Silva LS; Dorado F; Romero A; Valverde JL
    J Colloid Interface Sci; 2012 Aug; 380(1):173-81. PubMed ID: 22682327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3.
    Mondloch JE; Wang Q; Frenkel AI; Finke RG
    J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.