These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 37504603)
1. The Study of Cell-Penetrating Peptides to Deliver dsRNA and siRNA by Feeding in the Desert Locust, Vogel E; Santos D; Huygens C; Peeters P; Van den Brande S; Wynant N; Vanden Broeck J Insects; 2023 Jul; 14(7):. PubMed ID: 37504603 [TBL] [Abstract][Full Text] [Related]
2. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Wynant N; Santos D; Verdonck R; Spit J; Van Wielendaele P; Vanden Broeck J Insect Biochem Mol Biol; 2014 Mar; 46():1-8. PubMed ID: 24418314 [TBL] [Abstract][Full Text] [Related]
3. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Spit J; Philips A; Wynant N; Santos D; Plaetinck G; Vanden Broeck J Insect Biochem Mol Biol; 2017 Feb; 81():103-116. PubMed ID: 28093313 [TBL] [Abstract][Full Text] [Related]
4. Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects. Santos D; Mingels L; Vogel E; Wang L; Christiaens O; Cappelle K; Wynant N; Gansemans Y; Van Nieuwerburgh F; Smagghe G; Swevers L; Vanden Broeck J Viruses; 2019 Aug; 11(8):. PubMed ID: 31405199 [TBL] [Abstract][Full Text] [Related]
5. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects. Ghosh SKB; Hunter WB; Park AL; Gundersen-Rindal DE J Vis Exp; 2018 May; (135):. PubMed ID: 29782023 [TBL] [Abstract][Full Text] [Related]
6. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Song H; Zhang J; Li D; Cooper AMW; Silver K; Li T; Liu X; Ma E; Zhu KY; Zhang J Insect Biochem Mol Biol; 2017 Jul; 86():68-80. PubMed ID: 28576656 [TBL] [Abstract][Full Text] [Related]
7. Transport of orally delivered dsRNA in southern green stink bug, Nezara viridula. Gurusamy D; Howell JL; Chereddy SCRR; Koo J; Palli SR Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21692. PubMed ID: 32441400 [TBL] [Abstract][Full Text] [Related]
9. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Luo Y; Wang X; Wang X; Yu D; Chen B; Kang L Insect Mol Biol; 2013 Oct; 22(5):574-83. PubMed ID: 23869949 [TBL] [Abstract][Full Text] [Related]
10. Differential responses to double-stranded RNA injection and feeding in Mormon cricket (Orthoptera: Tettigoniidae). Rana S; Kang C; Allred J; Medina-Duran JH; Canova A; Sherry D; Woller DA; Kim D; Song H J Insect Sci; 2023 Jul; 23(4):. PubMed ID: 37527468 [TBL] [Abstract][Full Text] [Related]
11. Tissue-dependence and sensitivity of the systemic RNA interference response in the desert locust, Schistocerca gregaria. Wynant N; Verlinden H; Breugelmans B; Simonet G; Vanden Broeck J Insect Biochem Mol Biol; 2012 Dec; 42(12):911-7. PubMed ID: 23022143 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms, Applications, and Challenges of Insect RNA Interference. Zhu KY; Palli SR Annu Rev Entomol; 2020 Jan; 65():293-311. PubMed ID: 31610134 [TBL] [Abstract][Full Text] [Related]
13. Double strand RNA delivery system for plant-sap-feeding insects. Ghosh SK; Hunter WB; Park AL; Gundersen-Rindal DE PLoS One; 2017; 12(2):e0171861. PubMed ID: 28182760 [TBL] [Abstract][Full Text] [Related]
14. The stability and sequence cleavage preference of dsRNA are key factors differentiating RNAi efficiency between migratory locust and Asian corn borer. Fan Y; Song H; Abbas M; Wang Y; Liu X; Li T; Ma E; Zhu KY; Zhang J Insect Biochem Mol Biol; 2022 Apr; 143():103738. PubMed ID: 35134534 [TBL] [Abstract][Full Text] [Related]
15. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Ren D; Cai Z; Song J; Wu Z; Zhou S Insect Mol Biol; 2014 Apr; 23(2):175-84. PubMed ID: 24308607 [TBL] [Abstract][Full Text] [Related]
16. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. Nitnavare RB; Bhattacharya J; Singh S; Kour A; Hawkesford MJ; Arora N Front Plant Sci; 2021; 12():673576. PubMed ID: 34733295 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. Nishide Y; Kageyama D; Tanaka Y; Yokoi K; Jouraku A; Futahashi R; Fukatsu T PLoS One; 2021; 16(1):e0245081. PubMed ID: 33444324 [TBL] [Abstract][Full Text] [Related]
18. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. Sharma R; Christiaens O; Taning CN; Smagghe G Pest Manag Sci; 2021 Jan; 77(1):77-84. PubMed ID: 32696565 [TBL] [Abstract][Full Text] [Related]
19. Biological mechanisms determining the success of RNA interference in insects. Wynant N; Santos D; Vanden Broeck J Int Rev Cell Mol Biol; 2014; 312():139-67. PubMed ID: 25262241 [TBL] [Abstract][Full Text] [Related]
20. Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera. Asokan R; Chandra GS; Manamohan M; Kumar NK Bull Entomol Res; 2013 Oct; 103(5):555-63. PubMed ID: 23557597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]