These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37504604)

  • 1. Conferring High IAA Productivity on Low-IAA-Producing Organisms with PonAAS2, an Aromatic Aldehyde Synthase of a Galling Sawfly, and Identification of Its Inhibitor.
    Hiura T; Yoshida H; Miyata U; Asami T; Suzuki Y
    Insects; 2023 Jul; 14(7):. PubMed ID: 37504604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an aromatic aldehyde synthase involved in indole-3-acetic acid biosynthesis in the galling sawfly (Pontania sp.) and screening of an inhibitor.
    Miyata U; Arakawa K; Takei M; Asami T; Asanbou K; Toshima H; Suzuki Y
    Insect Biochem Mol Biol; 2021 Oct; 137():103639. PubMed ID: 34428582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.
    Suzuki H; Yokokura J; Ito T; Arai R; Yokoyama C; Toshima H; Nagata S; Asami T; Suzuki Y
    Insect Biochem Mol Biol; 2014 Oct; 53():66-72. PubMed ID: 25111299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Localization of Phytohormones within the Gall-inducing Insect
    Ponce GE; Fuse M; Chan A; Connor EF
    Arthropod Plant Interact; 2021 Jun; 15(3):375-385. PubMed ID: 34149963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terrestrial arthropods broadly possess endogenous phytohormones auxin and cytokinins.
    Tokuda M; Suzuki Y; Fujita S; Matsuda H; Adachi-Fukunaga S; Elsayed AK
    Sci Rep; 2022 Mar; 12(1):4750. PubMed ID: 35306514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland.
    Takei M; Kogure S; Yokoyama C; Kouzuma Y; Suzuki Y
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):129-136. PubMed ID: 30286706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Assessment of the Contribution of the
    Fiutek N; Couger MB; Pirro S; Roy SW; de la Torre JR; Connor EF
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gall-induction in insects: evolutionary dead-end or speciation driver?
    Hardy NB; Cook LG
    BMC Evol Biol; 2010 Aug; 10():257. PubMed ID: 20735853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.
    Yokoyama C; Takei M; Kouzuma Y; Nagata S; Suzuki Y
    J Insect Physiol; 2017 Aug; 101():91-96. PubMed ID: 28733236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Auxin and Cytokinins Concentrations, and the Structure of Bacterial Community between Host Twigs and
    Yang XM; Hui Y; Zhao LQ; Zhu DH; Zeng Y; Yang XH
    Insects; 2021 Oct; 12(11):. PubMed ID: 34821783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid.
    Body MJA; Zinkgraf MS; Whitham TG; Lin CH; Richardson RA; Appel HM; Schultz JC
    Mol Plant Microbe Interact; 2019 Jun; 32(6):654-672. PubMed ID: 30520677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles.
    BarĂ´nio GJ; Oliveira DC
    Plant Signal Behav; 2019; 14(11):1665454. PubMed ID: 31538533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite
    Yang M; Li H; Qiao H; Guo K; Xu R; Wei H; Wei J; Liu S; Xu C
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bound auxin metabolism in cultured crown-gall tissues of tobacco.
    Vijayaraghavan SJ; Pengelly WL
    Plant Physiol; 1986 Feb; 80(2):315-21. PubMed ID: 16664620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole-3-acetic acid and ball gall development on Solidago altissima.
    Mapes CC; Davies PJ
    New Phytol; 2001 Jul; 151(1):195-202. PubMed ID: 33873373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.