BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37504604)

  • 1. Conferring High IAA Productivity on Low-IAA-Producing Organisms with PonAAS2, an Aromatic Aldehyde Synthase of a Galling Sawfly, and Identification of Its Inhibitor.
    Hiura T; Yoshida H; Miyata U; Asami T; Suzuki Y
    Insects; 2023 Jul; 14(7):. PubMed ID: 37504604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an aromatic aldehyde synthase involved in indole-3-acetic acid biosynthesis in the galling sawfly (Pontania sp.) and screening of an inhibitor.
    Miyata U; Arakawa K; Takei M; Asami T; Asanbou K; Toshima H; Suzuki Y
    Insect Biochem Mol Biol; 2021 Oct; 137():103639. PubMed ID: 34428582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.
    Suzuki H; Yokokura J; Ito T; Arai R; Yokoyama C; Toshima H; Nagata S; Asami T; Suzuki Y
    Insect Biochem Mol Biol; 2014 Oct; 53():66-72. PubMed ID: 25111299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Localization of Phytohormones within the Gall-inducing Insect
    Ponce GE; Fuse M; Chan A; Connor EF
    Arthropod Plant Interact; 2021 Jun; 15(3):375-385. PubMed ID: 34149963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terrestrial arthropods broadly possess endogenous phytohormones auxin and cytokinins.
    Tokuda M; Suzuki Y; Fujita S; Matsuda H; Adachi-Fukunaga S; Elsayed AK
    Sci Rep; 2022 Mar; 12(1):4750. PubMed ID: 35306514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland.
    Takei M; Kogure S; Yokoyama C; Kouzuma Y; Suzuki Y
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):129-136. PubMed ID: 30286706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Assessment of the Contribution of the
    Fiutek N; Couger MB; Pirro S; Roy SW; de la Torre JR; Connor EF
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gall-induction in insects: evolutionary dead-end or speciation driver?
    Hardy NB; Cook LG
    BMC Evol Biol; 2010 Aug; 10():257. PubMed ID: 20735853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.
    Yokoyama C; Takei M; Kouzuma Y; Nagata S; Suzuki Y
    J Insect Physiol; 2017 Aug; 101():91-96. PubMed ID: 28733236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Auxin and Cytokinins Concentrations, and the Structure of Bacterial Community between Host Twigs and
    Yang XM; Hui Y; Zhao LQ; Zhu DH; Zeng Y; Yang XH
    Insects; 2021 Oct; 12(11):. PubMed ID: 34821783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytokinins Are Abundant and Widespread Among Insect Species.
    Andreas P; Kisiala A; Emery RJN; De Clerck-Floate R; Tooker JF; Price PW; Miller Iii DG; Chen MS; Connor EF
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid.
    Body MJA; Zinkgraf MS; Whitham TG; Lin CH; Richardson RA; Appel HM; Schultz JC
    Mol Plant Microbe Interact; 2019 Jun; 32(6):654-672. PubMed ID: 30520677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles.
    BarĂ´nio GJ; Oliveira DC
    Plant Signal Behav; 2019; 14(11):1665454. PubMed ID: 31538533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite
    Yang M; Li H; Qiao H; Guo K; Xu R; Wei H; Wei J; Liu S; Xu C
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bound auxin metabolism in cultured crown-gall tissues of tobacco.
    Vijayaraghavan SJ; Pengelly WL
    Plant Physiol; 1986 Feb; 80(2):315-21. PubMed ID: 16664620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.