BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37504703)

  • 1. Improvement of DOPA-Melanin Production by
    Campanhol BS; Ribeiro BD; Casellato F; Medina KJD; Sponchiado SRP
    J Fungi (Basel); 2023 Jun; 9(7):. PubMed ID: 37504703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved natural melanin production by Aspergillus nidulans after optimization of factors involved in the pigment biosynthesis pathway.
    Medeiros WB; Medina KJD; Sponchiado SRP
    Microb Cell Fact; 2022 Dec; 21(1):278. PubMed ID: 36585654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of melanin pigment produced by Aspergillus nidulans.
    Gonçalves RC; Lisboa HC; Pombeiro-Sponchiado SR
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1467-74. PubMed ID: 22805928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanin biopolymers from newly isolated Pseudomonas koreensis strain UIS 19 with potential for cosmetics application, and optimization on molasses waste medium.
    Eskandari S; Etemadifar Z
    J Appl Microbiol; 2021 Sep; 131(3):1331-1343. PubMed ID: 33609007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans.
    de Cássia R Goncalves R; Pombeiro-Sponchiado SR
    Biol Pharm Bull; 2005 Jun; 28(6):1129-31. PubMed ID: 15930763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Exopolysaccharide Production by
    Gudiña EJ; Couto MR; Silva SP; Coelho E; Coimbra MA; Teixeira JA; Rodrigues LR
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of succinic acid from sugarcane molasses supplemented with a mixture of corn steep liquor powder and peanut meal as nitrogen sources by Actinobacillus succinogenes.
    Shen N; Qin Y; Wang Q; Liao S; Zhu J; Zhu Q; Mi H; Adhikari B; Wei Y; Huang R
    Lett Appl Microbiol; 2015 Jun; 60(6):544-51. PubMed ID: 25647487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor.
    Vu VH; Kim K
    J Microbiol Biotechnol; 2009 Dec; 19(12):1603-11. PubMed ID: 20075626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of culture medium and scale-up production of astaxanthin using corn steep liquor as substrate by response surface methodology.
    Guan X; Zhang J; Xu N; Cai C; Lu Y; Liu Y; Dai W; Wang X; Nan B; Li X; Wang Y
    Prep Biochem Biotechnol; 2023; 53(4):443-453. PubMed ID: 35838518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain.
    Liu E; Li M; Abdella A; Wilkins MR
    Bioresour Technol; 2020 Jun; 305():123038. PubMed ID: 32120232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotene production from agro-industrial wastes by Arthrobacter globiformis in shake-flask culture.
    Zhai YG; Han M; Zhang WG; Qian H
    Prep Biochem Biotechnol; 2014; 44(4):355-69. PubMed ID: 24320236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of
    Chuppa-Tostain G; Hoarau J; Watson M; Adelard L; Shum Cheong Sing A; Caro Y; Grondin I; Bourven I; Francois JM; Girbal-Neuhauser E; Petit T
    Fungal Biol Biotechnol; 2018; 5():1. PubMed ID: 29372063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid Production by
    Dias Rodrigues TV; Amore TD; Teixeira EC; de Medeiros Burkert JF
    Food Technol Biotechnol; 2019 Sep; 57(3):388-398. PubMed ID: 31866752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways.
    Strycker BD; Han Z; Bahari A; Pham T; Lin X; Shaw BD; Sokolov AV; Scully MO
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nitric oxide and tumour necrosis factor-α production in peritoneal macrophages by Aspergillus nidulans melanin.
    Gonçalves Rde C; Kitagawa RR; Raddi MS; Carlos IZ; Pombeiro-Sponchiado SR
    Biol Pharm Bull; 2013; 36(12):1915-20. PubMed ID: 24432378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium.
    Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M
    N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.
    Pardo-Planas O; Prade RA; Müller M; Atiyeh HK; Wilkins MR
    Bioresour Technol; 2017 Nov; 243():874-882. PubMed ID: 28738504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cost effective fermentative production of succinic acid from cane molasses and corn steep liquor by Escherichia coli.
    Agarwal L; Isar J; Meghwanshi GK; Saxena RK
    J Appl Microbiol; 2006 Jun; 100(6):1348-54. PubMed ID: 16696683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response surface optimization for cellulose production from agro industrial waste by using new bacterial isolate
    Singh O; Panesar PS; Chopra HK
    Food Sci Biotechnol; 2017; 26(4):1019-1028. PubMed ID: 30263632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species.
    Pal AK; Gajjar DU; Vasavada AR
    Med Mycol; 2014 Jan; 52(1):10-8. PubMed ID: 23998343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.