These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37504825)

  • 41. Automatic renal lesion segmentation in ultrasound images based on saliency features, improved LBP, and an edge indicator under level set framework.
    Gui L; Yang X
    Med Phys; 2018 Jan; 45(1):223-235. PubMed ID: 29131363
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation.
    Zi-An Z; Xiu-Fang F; Xiao-Qiang R; Yun-Yun D
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988756
    [No Abstract]   [Full Text] [Related]  

  • 43. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Hybrid Deep Learning Approach for Skin Lesion Segmentation and Classification.
    Thapar P; Rakhra M; Cazzato G; Hossain MS
    J Healthc Eng; 2022; 2022():1709842. PubMed ID: 35480147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Improved Microaneurysm Detection Model Based on SwinIR and YOLOv8.
    Zhang B; Li J; Bai Y; Jiang Q; Yan B; Wang Z
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38135996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fully automatic segmentation algorithm for CT lung images based on random forest.
    Liu C; Zhao R; Pang M
    Med Phys; 2020 Feb; 47(2):518-529. PubMed ID: 31788807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification.
    Mahbod A; Schaefer G; Wang C; Dorffner G; Ecker R; Ellinger I
    Comput Methods Programs Biomed; 2020 Sep; 193():105475. PubMed ID: 32268255
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss.
    Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; BĂ©nard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J
    Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fusing fine-tuned deep features for skin lesion classification.
    Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C
    Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trophectoderm segmentation in human embryo images via inceptioned U-Net.
    Rad RM; Saeedi P; Au J; Havelock J
    Med Image Anal; 2020 May; 62():101612. PubMed ID: 32120267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutual enhancing learning-based automatic segmentation of CT cardiac substructure.
    Momin S; Lei Y; McCall NS; Zhang J; Roper J; Harms J; Tian S; Lloyd MS; Liu T; Bradley JD; Higgins K; Yang X
    Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447610
    [No Abstract]   [Full Text] [Related]  

  • 53. A self-supervised strategy for fully automatic segmentation of renal dynamic contrast-enhanced magnetic resonance images.
    Huang W; Li H; Wang R; Zhang X; Wang X; Zhang J
    Med Phys; 2019 Oct; 46(10):4417-4430. PubMed ID: 31306492
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cross-modal Transfer Learning Based on an Improved CycleGAN Model for Accurate Kidney Segmentation in Ultrasound Images.
    Guo S; Chen H; Sheng X; Xiong Y; Wu M; Fischer K; Tasian GE; Fan Y; Yin S
    Ultrasound Med Biol; 2024 Nov; 50(11):1638-1645. PubMed ID: 39181806
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Semi-Automatic Magnetic Resonance Imaging Annotation Algorithm Based on Semi-Weakly Supervised Learning.
    Chen S; Zhang Z
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uncertainty estimation- and attention-based semi-supervised models for automatically delineate clinical target volume in CBCT images of breast cancer.
    Wang Z; Cao N; Sun J; Zhang H; Zhang S; Ding J; Xie K; Gao L; Ni X
    Radiat Oncol; 2024 May; 19(1):66. PubMed ID: 38811994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. S
    Alam MJ; Mohammad MS; Hossain MAF; Showmik IA; Raihan MS; Ahmed S; Mahmud T
    Comput Biol Med; 2022 Nov; 150():106148. PubMed ID: 36252363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dense Pedestrian Detection Based on GR-YOLO.
    Li N; Bai X; Shen X; Xin P; Tian J; Chai T; Wang Z
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dermoscopic Image Classification Method Using an Ensemble of Fine-Tuned Convolutional Neural Networks.
    Shen X; Wei L; Tang S
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.