These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37504838)

  • 21. Synergistically Promoting Bone Regeneration by Icariin-Incorporated Porous Microcarriers and Decellularized Extracellular Matrix Derived From Bone Marrow Mesenchymal Stem Cells.
    Zhou M; Guo M; Shi X; Ma J; Wang S; Wu S; Yan W; Wu F; Zhang P
    Front Bioeng Biotechnol; 2022; 10():824025. PubMed ID: 35464719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boosting osteogenic potential and bone regeneration by co-cultured cell derived extracellular matrix incorporated porous electrospun scaffold.
    Padalhin A; Ventura R; Kim B; Sultana T; Park CM; Lee BT
    J Biomater Sci Polym Ed; 2021 Apr; 32(6):779-798. PubMed ID: 33375905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review.
    Anjum S; Li T; Saeed M; Ao Q
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127891. PubMed ID: 37931866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attapulgite-doped electrospun PCL scaffolds for enhanced bone regeneration in rat cranium defects.
    Dai T; Ma J; Ni S; Liu C; Wang Y; Wu S; Liu J; Weng Y; Zhou D; Jimenez-Franco A; Zhao H; Zhao X
    Biomater Adv; 2022 Feb; 133():112656. PubMed ID: 35034813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cell on Highly Porous Polycaprolactone Scaffold Reinforced With Layered Double Hydroxides Nanoclay.
    Enderami SE; Shafiei SS; Shamsara M; Enderami SE; Rostamian Tabari A
    Front Bioeng Biotechnol; 2022; 10():805969. PubMed ID: 35284421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decellularized extracellular matrix scaffold seeded with adipose-derived stem cells promotes neurorestoration and functional recovery after spinal cord injury through Wnt/
    Su X; Teng M; Zhang Y; Ji W
    Biomed Mater; 2023 Dec; 19(1):. PubMed ID: 38044745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds.
    Xu Y; Xu GY; Tang C; Wei B; Pei X; Gui JC; Min BH; Jin CZ; Wang LM
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):670-8. PubMed ID: 25045062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic biocomposite scaffold based on decellularized tendon ECM and MNP-deposited halloysite nanotubes: physicochemical, thermal, rheological, mechanical and
    Koç-Demir A; Elçin AE; Elçin YM
    Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38537375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro.
    Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE
    Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macro- and microporous polycaprolactone/duck's feet collagen scaffold fabricated by combining facile phase separation and particulate leaching techniques to enhance osteogenesis for bone tissue engineering.
    Song Y; Choi JH; Tumursukh NE; Kim NE; Jeon GY; Kim SE; Kim SI; Song JE; Elçin YM; Khang G
    J Biomater Sci Polym Ed; 2022 Jun; 33(8):1025-1042. PubMed ID: 35118913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing.
    Fu H; Zhang D; Zeng J; Fu Q; Chen Z; Sun X; Yang Y; Li S; Chen M
    Int J Bioprint; 2023; 9(2):674. PubMed ID: 37065662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Childhood Cartilage ECM Enhances the Chondrogenesis of Endogenous Cells and Subchondral Bone Repair of the Unidirectional Collagen-dECM Scaffolds in Combination with Microfracture.
    Cao H; Wang X; Chen M; Liu Y; Cui X; Liang J; Wang Q; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57043-57057. PubMed ID: 34806361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis.
    Kang Y; Xu J; Meng L; Su Y; Fang H; Liu J; Cheng YY; Jiang D; Nie Y; Song K
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36756934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An additive manufacturing-based 3D printed poly ɛ-caprolactone/alginate sulfate/extracellular matrix construct for nasal cartilage regeneration.
    Zare P; Pezeshki-Modaress M; Davachi SM; Chahsetareh H; Simorgh S; Asgari N; Haramshahi MA; Alizadeh R; Bagher Z; Farhadi M
    J Biomed Mater Res A; 2022 Jun; 110(6):1199-1209. PubMed ID: 35098649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.