These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37504838)

  • 41. Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications.
    Park J; Lee SJ; Jung TG; Lee JH; Kim WD; Lee JY; Park SA
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111528. PubMed ID: 33385823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair.
    Zhao S; Xie K; Guo Y; Tan J; Wu J; Yang Y; Fu P; Wang L; Jiang W; Hao Y
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5120-5131. PubMed ID: 33455263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.
    Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L
    Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and Characterization of Electrospun Decellularized Muscle-Derived Scaffolds.
    Smoak MM; Han A; Watson E; Kishan A; Grande-Allen KJ; Cosgriff-Hernandez E; Mikos AG
    Tissue Eng Part C Methods; 2019 May; 25(5):276-287. PubMed ID: 30909819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Osteochondral regeneration in rabbit using xenograft decellularized ECM in combination with different biological products; platelet-rich fibrin, amniotic membrane extract, and mesenchymal stromal cells.
    Rastegar Adib F; Bagheri F; Sharifi AM
    J Biomed Mater Res B Appl Biomater; 2022 Sep; 110(9):2089-2099. PubMed ID: 35383398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.
    Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L
    Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decellularized Lung Extracellular Matrix Scaffold Promotes Human Embryonic Stem Cell Differentiation towards Alveolar Progenitors.
    Noori A; Mokhber Dezfouli MR; Rajabi S; Ganji F; Ghezelayagh Z; El Agha E; Baharvand H; Sadeghian Chaleshtori S; Tahamtani Y
    Cell J; 2023 Jun; 25(6):372-382. PubMed ID: 37434454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Composite scaffolds composed of bone marrow mesenchymal stem cell-derived extracellular matrix and marrow clots promote marrow cell retention and proliferation.
    Wei B; Guo Y; Xu Y; Mao F; Yao Q; Jin C; Gu Q; Wang L
    J Biomed Mater Res A; 2015 Jul; 103(7):2374-82. PubMed ID: 25410417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone marrow stem cells-derived extracellular matrix is a promising material.
    Wang X; Chen G; Huang C; Tu H; Zou J; Yan J
    Oncotarget; 2017 Nov; 8(58):98336-98347. PubMed ID: 29228693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M; Saleem A; Paramita P; Kumar SD; Tze-Wen C; Selvamurugan N; Moorthi A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):654-664. PubMed ID: 32935919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering.
    Kamath MS; Ahmed SS; Dhanasekaran M; Santosh SW
    Int J Nanomedicine; 2014; 9():183-95. PubMed ID: 24399875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration.
    Lee H; Yang GH; Kim M; Lee J; Huh J; Kim G
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():140-147. PubMed ID: 29519423
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Hydroxyapatite Coating by Er: YAG Pulsed Laser Deposition on the Bone Formation Efficacy by Polycaprolactone Porous Scaffold.
    Zhang Y; Jo JI; Chen L; Hontsu S; Hashimoto Y
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.