These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37504996)

  • 41. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conversion mechanism of thermal plasma-enhanced CH
    Zhou Y; Chu R; Fan L; Zhao J; Li W; Jiang X; Meng X; Li Y; Yu S; Wan Y
    Sci Total Environ; 2023 Mar; 866():161453. PubMed ID: 36626987
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogen Production from Gadolinium-Promoted Yttrium-Zirconium-Supported Ni Catalysts through Dry Methane Reforming.
    Fakeeha AH; Al-Fatesh AS; Srivastava VK; Ibrahim AA; Abahussain AAM; Abu-Dahrieh JK; Alotibi MF; Kumar R
    ACS Omega; 2023 Jun; 8(24):22108-22120. PubMed ID: 37360458
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An On-Board Pure H
    Parvasi P; Mohammad Jokar S; Basile A; Iulianelli A
    Membranes (Basel); 2020 Jul; 10(7):. PubMed ID: 32708235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas.
    Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming.
    Akri M; Zhao S; Li X; Zang K; Lee AF; Isaacs MA; Xi W; Gangarajula Y; Luo J; Ren Y; Cui YT; Li L; Su Y; Pan X; Wen W; Pan Y; Wilson K; Li L; Qiao B; Ishii H; Liao YF; Wang A; Wang X; Zhang T
    Nat Commun; 2019 Nov; 10(1):5181. PubMed ID: 31729358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon dioxide conversion via reverse water-gas shift reaction: Reactor design.
    Santos MF; Bresciani AE; Ferreira NL; Bassani GS; Alves RMB
    J Environ Manage; 2023 Nov; 345():118822. PubMed ID: 37597369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Syngas Production by Chemical Looping Dry Reforming of Methane over Ni-modified MoO
    Maeno Z; Koiso H; Shitori T; Hiraoka K; Seki S; Namiki N
    Chem Asian J; 2023 Dec; ():e202301096. PubMed ID: 38146061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined Steam Reforming of Methane and Formic Acid To Produce Syngas with an Adjustable H
    Rahbari A; Ramdin M; van den Broeke LJP; Vlugt TJH
    Ind Eng Chem Res; 2018 Aug; 57(31):10663-10674. PubMed ID: 30270977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gas reforming and tar decomposition performance of nickel oxide (NiO)/SBA-15 catalyst in gasification of woody biomass.
    Inoue N; Tada T; Kawamoto K
    J Air Waste Manag Assoc; 2019 Apr; 69(4):502-512. PubMed ID: 30540545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming.
    Liang TY; Senthil Raja D; Chin KC; Huang CL; Sethupathi SA; Leong LK; Tsai DH; Lu SY
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15183-15193. PubMed ID: 32167283
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of operational conditions on methane yield and microbial community composition during biological methanation in in situ and hybrid reactor systems.
    Wahid R; Horn SJ
    Biotechnol Biofuels; 2021 Aug; 14(1):170. PubMed ID: 34416924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sinter-resistant Rh nanoparticles supported on γ-Al
    Chu S; Cai Z; Wang M; Zheng Y; Wang Y; Zhou Z; Weng W
    Nanoscale; 2020 Oct; 12(40):20922-20932. PubMed ID: 33090164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl
    Tarifa P; Ramirez Reina T; González-Castaño M; Arellano-García H
    Energy Fuels; 2022 Aug; 36(15):8267-8273. PubMed ID: 35966174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The structural evolution of Mo
    Kurlov A; Stoian D; Baghizadeh A; Kountoupi E; Deeva EB; Willinger M; Abdala PM; Fedorov A; Müller CR
    Catal Sci Technol; 2022 Sep; 12(18):5620-5628. PubMed ID: 36275487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.