These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37505073)
1. Current Situation of Fire Blight in China. Sun W; Gong P; Zhao Y; Ming L; Zeng Q; Liu F Phytopathology; 2023 Dec; 113(12):2143-2151. PubMed ID: 37505073 [TBL] [Abstract][Full Text] [Related]
2. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy. Ramos LS; Sinn JP; Lehman BL; Pfeufer EE; Peter KA; McNellis TW Lett Appl Microbiol; 2015 Jun; 60(6):572-9. PubMed ID: 25789570 [TBL] [Abstract][Full Text] [Related]
3. Functional characterization of the adenine transporter EaAdeP from the fire blight pathogen Erwinia amylovora and its effect on disease establishment in apples and pears. Alexander CR; Huntley RB; Schultes NP; Mourad GS FEMS Microbiol Lett; 2020 Nov; 367(20):. PubMed ID: 33152083 [TBL] [Abstract][Full Text] [Related]
4. Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora: Survival and Transmission. Ordax M; Piquer-Salcedo JE; Santander RD; Sabater-Muñoz B; Biosca EG; López MM; Marco-Noales E PLoS One; 2015; 10(5):e0127560. PubMed ID: 25978369 [TBL] [Abstract][Full Text] [Related]
5. The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Yuan X; Eldred LI; Kharadi RR; Slack SM; Sundin GW Appl Environ Microbiol; 2022 May; 88(9):e0023922. PubMed ID: 35416685 [TBL] [Abstract][Full Text] [Related]
6. Reduction in bacterial ooze formation on immature fruitlets after preventive treatments of Fosethyl-Al against fire blight Erwinia amylovora. Deckers T; Schoofs H; Verjans W; De Maeyer L Commun Agric Appl Biol Sci; 2010; 75(4):569-76. PubMed ID: 21534464 [TBL] [Abstract][Full Text] [Related]
7. The Apple Fruitlet Model System for Fire Blight Disease. Klee SM; Sinn JP; McNellis TW Methods Mol Biol; 2019; 1991():187-198. PubMed ID: 31041773 [TBL] [Abstract][Full Text] [Related]
8. Virulence Genetics of an Erwinia amylovora Putative Polysaccharide Transporter Family Member. Klee SM; Sinn JP; Christian E; Holmes AC; Zhao K; Lehman BL; Peter KA; Rosa C; McNellis TW J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32839177 [TBL] [Abstract][Full Text] [Related]
9. Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster. Boucher M; Collins R; Cox K; Loeb G Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126937 [TBL] [Abstract][Full Text] [Related]
10. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears. Ramos LS; Lehman BL; Peter KA; McNellis TW Appl Environ Microbiol; 2014 Nov; 80(21):6739-49. PubMed ID: 25172854 [TBL] [Abstract][Full Text] [Related]
11. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids. Konecki K; Gernold M; Wensing A; Geider K Arch Microbiol; 2013 Nov; 195(10-11):759-64. PubMed ID: 24077735 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. McGhee GC; Sundin GW Phytopathology; 2011 Feb; 101(2):192-204. PubMed ID: 20923369 [TBL] [Abstract][Full Text] [Related]
13. Contribution of Native Plasmids of Klein-Gordon JM; Johnson KB; Loper JE; Stockwell VO Phytopathology; 2023 Dec; 113(12):2187-2196. PubMed ID: 37287124 [No Abstract] [Full Text] [Related]
14. Erwinia amylovora Auxotrophic Mutant Exometabolomics and Virulence on Apples. Klee SM; Sinn JP; Finley M; Allman EL; Smith PB; Aimufua O; Sitther V; Lehman BL; Krawczyk T; Peter KA; McNellis TW Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152019 [TBL] [Abstract][Full Text] [Related]
15. An Erwinia amylovora uracil transporter mutant retains virulence on immature apple and pear fruit. Bittner AJ; Huntley RB; Mourad GS; Schultes NP Microb Pathog; 2020 Oct; 147():104363. PubMed ID: 32615243 [TBL] [Abstract][Full Text] [Related]
16. Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Paternoster T; Défago G; Duffy B; Gessler C; Pertot I Int Microbiol; 2010 Dec; 13(4):195-206. PubMed ID: 21404214 [TBL] [Abstract][Full Text] [Related]
17. Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae. Jakovljevic V; Jock S; Du Z; Geider K Microb Biotechnol; 2008 Sep; 1(5):416-24. PubMed ID: 21261861 [TBL] [Abstract][Full Text] [Related]
18. Applications of Germicidal Ultraviolet Light as a Tool for Fire Blight Management ( Yannuzzi IM; Gadoury DM; Davidson A; Cox KD Phytopathology; 2023 Dec; 113(12):2215-2221. PubMed ID: 37606320 [TBL] [Abstract][Full Text] [Related]
19. Assessing and Minimizing the Development and Spread of Fire Blight Following Mechanical Thinning and Pruning in Apple Orchards. Wallis AE; Miranda-Sazo MR; Cox KD Plant Dis; 2021 Mar; 105(3):650-659. PubMed ID: 32804041 [TBL] [Abstract][Full Text] [Related]
20. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight]. Tovkach FI; Moroz SN; Korol' NA; Faĭdiuk IuV; Kushkina AI Mikrobiol Z; 2013; 75(2):80-8. PubMed ID: 23720968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]