These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37505085)

  • 1. Structural analysis of human ATE1 isoforms and their interactions with Arg-tRNA
    Naga R; Poddar S; Bhattacharjee A; Kar P; Bose A; Mattaparthi VSK; Mukherjee O; Saha S
    J Biomol Struct Dyn; 2023 Jul; ():1-20. PubMed ID: 37505085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Interplay between Arginyl-tRNA Synthetases and Arginyltransferase.
    Avcilar-Kucukgoze I; MacTaggart B; Kashina A
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA
    Avcilar-Kucukgoze I; Gamper H; Polte C; Ignatova Z; Kraetzner R; Shtutman M; Hou YM; Dong DW; Kashina A
    Cell Chem Biol; 2020 Jul; 27(7):839-849.e4. PubMed ID: 32553119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.
    Wadas B; Piatkov KI; Brower CS; Varshavsky A
    J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates.
    Kim BH; Kim MK; Oh SJ; Nguyen KT; Kim JH; Varshavsky A; Hwang CS; Song HK
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2209597119. PubMed ID: 35878037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.
    Kumar A; Birnbaum MD; Patel DM; Morgan WM; Singh J; Barrientos A; Zhang F
    Cell Death Dis; 2016 Sep; 7(9):e2378. PubMed ID: 27685622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational Arginylation Enzyme Arginyltransferase1 Shows Genetic Interactions With Specific Cellular Pathways
    Wiley DJ; D'Urso G; Zhang F
    Front Physiol; 2020; 11():427. PubMed ID: 32435206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum.
    Batsios P; Ishikawa-Ankerhold HC; Roth H; Schleicher M; Wong CCL; Müller-Taubenberger A
    Mol Biol Cell; 2019 Feb; 30(4):453-466. PubMed ID: 30586322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo.
    Wang J; Han X; Wong CC; Cheng H; Aslanian A; Xu T; Leavis P; Roder H; Hedstrom L; Yates JR; Kashina A
    Chem Biol; 2014 Mar; 21(3):331-7. PubMed ID: 24529990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.
    Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A
    J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATE1-Mediated Post-Translational Arginylation Is an Essential Regulator of Eukaryotic Cellular Homeostasis.
    Van V; Smith AT
    ACS Chem Biol; 2020 Dec; 15(12):3073-3085. PubMed ID: 33228359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational protein arginylation in the normal nervous system and in neurodegeneration.
    Galiano MR; Goitea VE; Hallak ME
    J Neurochem; 2016 Aug; 138(4):506-17. PubMed ID: 27318192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.
    Brower CS; Rosen CE; Jones RH; Wadas BC; Piatkov KI; Varshavsky A
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4936-45. PubMed ID: 25369936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo.
    Wang J; Han X; Saha S; Xu T; Rai R; Zhang F; Wolf YI; Wolfson A; Yates JR; Kashina A
    Chem Biol; 2011 Jan; 18(1):121-30. PubMed ID: 21276945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preparation of recombinant arginyltransferase 1 (ATE1) for biophysical characterization.
    Cartwright M; Van V; Smith AT
    Methods Enzymol; 2023; 679():235-254. PubMed ID: 36682863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1.
    Jiang C; Moorthy BT; Patel DM; Kumar A; Morgan WM; Alfonso B; Huang J; Lampidis TJ; Isom DG; Barrientos A; Fontanesi F; Zhang F
    Front Cell Dev Biol; 2020; 8():603688. PubMed ID: 33409279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ablation of arginyl-tRNA-protein transferase in oligodendrocytes impairs central nervous system myelination.
    Palandri A; Bonnet LV; Farias MG; Hallak ME; Galiano MR
    Glia; 2022 Feb; 70(2):303-320. PubMed ID: 34669233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural basis of tRNA recognition by arginyl-tRNA-protein transferase.
    Abeywansha T; Huang W; Ye X; Nawrocki A; Lan X; Jankowsky E; Taylor DJ; Zhang Y
    Nat Commun; 2023 Apr; 14(1):2232. PubMed ID: 37076488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation.
    Avcilar-Kucukgoze I; MacTaggart B; Kashina A
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assaying ATE1 Activity In Vitro.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():113-117. PubMed ID: 37010756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.