These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37505244)

  • 1. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases.
    Du P; Liu X; Xiang R; Lv K; Chen H; Liu W; Cao A; Chen L; Wang X; Yu T; Ding J; Li W; Li J; Li Y; Yu Z; Zhu L; Liu J; Geng D
    Eur Radiol; 2023 Dec; 33(12):8925-8935. PubMed ID: 37505244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of treatment response in patients with brain metastasis receiving stereotactic radiosurgery based on pre-treatment multimodal MRI radiomics and clinical risk factors: A machine learning model.
    Du P; Liu X; Shen L; Wu X; Chen J; Chen L; Cao A; Geng D
    Front Oncol; 2023; 13():1114194. PubMed ID: 36994193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
    Cha YJ; Jang WI; Kim MS; Yoo HJ; Paik EK; Jeong HK; Youn SM
    Anticancer Res; 2018 Sep; 38(9):5437-5445. PubMed ID: 30194200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodality MRI-based radiomics approach to predict the posttreatment response of lung cancer brain metastases to gamma knife radiosurgery.
    Jiang Z; Wang B; Han X; Zhao P; Gao M; Zhang Y; Wei P; Lan C; Liu Y; Li D
    Eur Radiol; 2022 Apr; 32(4):2266-2276. PubMed ID: 34978579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study.
    Li X; Lu Y; Liu L; Wang D; Zhao Y; Mei N; Geng D; Ma X; Zheng W; Duan S; Wu PY; Wen H; Tan Y; Sun X; Sun S; Li Z; Yu T; Yin B
    Eur Radiol; 2023 Dec; 33(12):8912-8924. PubMed ID: 37498381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
    Basree MM; Li C; Um H; Bui AH; Liu M; Ahmed A; Tiwari P; McMillan AB; Baschnagel AM
    J Neurooncol; 2024 Jun; 168(2):307-316. PubMed ID: 38689115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases.
    Gutsche R; Lohmann P; Hoevels M; Ruess D; Galldiks N; Visser-Vandewalle V; Treuer H; Ruge M; Kocher M
    Radiother Oncol; 2022 Jan; 166():37-43. PubMed ID: 34801629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps.
    Wang H; Xue J; Qu T; Bernstein K; Chen T; Barbee D; Silverman JS; Kondziolka D
    Med Phys; 2021 Sep; 48(9):5522-5530. PubMed ID: 34287940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery.
    Mouraviev A; Detsky J; Sahgal A; Ruschin M; Lee YK; Karam I; Heyn C; Stanisz GJ; Martel AL
    Neuro Oncol; 2020 Jun; 22(6):797-805. PubMed ID: 31956919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI feature-based radiomics models to predict treatment outcome after stereotactic body radiotherapy for spinal metastases.
    Chen Y; Qin S; Zhao W; Wang Q; Liu K; Xin P; Yuan H; Zhuang H; Lang N
    Insights Imaging; 2023 Oct; 14(1):169. PubMed ID: 37817044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data.
    Cho SJ; Cho W; Choi D; Sim G; Jeong SY; Baik SH; Bae YJ; Choi BS; Kim JH; Yoo S; Han JH; Kim CY; Choo J; Sunwoo L
    Sci Rep; 2024 May; 14(1):11085. PubMed ID: 38750084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases.
    Liu X; Du P; Dai Z; Yi R; Liu W; Wu H; Geng D; Liu J
    Comput Biol Med; 2024 Jun; 175():108503. PubMed ID: 38688125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning.
    Jaberipour M; Soliman H; Sahgal A; Sadeghi-Naini A
    Sci Rep; 2021 Nov; 11(1):21620. PubMed ID: 34732781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics.
    Peng L; Parekh V; Huang P; Lin DD; Sheikh K; Baker B; Kirschbaum T; Silvestri F; Son J; Robinson A; Huang E; Ames H; Grimm J; Chen L; Shen C; Soike M; McTyre E; Redmond K; Lim M; Lee J; Jacobs MA; Kleinberg L
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):1236-1243. PubMed ID: 30353872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Key Clinical Variables and Radiological Manifestations Associated with the Treatment Response of Patients with Brain Metastases to Stereotactic Radiosurgery.
    Du P; Chen H; Shen L; Liu X; Chen J; Wu X; Yu T; Geng D
    J Clin Med; 2022 Aug; 11(15):. PubMed ID: 35956144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting stereotactic radiosurgery outcomes with multi-observer qualitative appearance labelling versus MRI radiomics.
    DeVries DA; Tang T; Albweady A; Leung A; Laba J; Johnson C; Lagerwaard F; Zindler J; Hajdok G; Ward AD
    Sci Rep; 2023 Nov; 13(1):20977. PubMed ID: 38017055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance sensitivity analysis of brain metastasis stereotactic radiosurgery outcome prediction using MRI radiomics.
    DeVries DA; Lagerwaard F; Zindler J; Yeung TPC; Rodrigues G; Hajdok G; Ward AD
    Sci Rep; 2022 Dec; 12(1):20975. PubMed ID: 36471160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases.
    Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can machine learning models improve early detection of brain metastases using diffusion weighted imaging-based radiomics?
    Madamesila J; Tchistiakova E; Faruqi S; Das S; Ploquin N
    Quant Imaging Med Surg; 2023 Dec; 13(12):7706-7718. PubMed ID: 38106308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.