BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37505244)

  • 1. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases.
    Du P; Liu X; Xiang R; Lv K; Chen H; Liu W; Cao A; Chen L; Wang X; Yu T; Ding J; Li W; Li J; Li Y; Yu Z; Zhu L; Liu J; Geng D
    Eur Radiol; 2023 Dec; 33(12):8925-8935. PubMed ID: 37505244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of treatment response in patients with brain metastasis receiving stereotactic radiosurgery based on pre-treatment multimodal MRI radiomics and clinical risk factors: A machine learning model.
    Du P; Liu X; Shen L; Wu X; Chen J; Chen L; Cao A; Geng D
    Front Oncol; 2023; 13():1114194. PubMed ID: 36994193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
    Cha YJ; Jang WI; Kim MS; Yoo HJ; Paik EK; Jeong HK; Youn SM
    Anticancer Res; 2018 Sep; 38(9):5437-5445. PubMed ID: 30194200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodality MRI-based radiomics approach to predict the posttreatment response of lung cancer brain metastases to gamma knife radiosurgery.
    Jiang Z; Wang B; Han X; Zhao P; Gao M; Zhang Y; Wei P; Lan C; Liu Y; Li D
    Eur Radiol; 2022 Apr; 32(4):2266-2276. PubMed ID: 34978579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study.
    Li X; Lu Y; Liu L; Wang D; Zhao Y; Mei N; Geng D; Ma X; Zheng W; Duan S; Wu PY; Wen H; Tan Y; Sun X; Sun S; Li Z; Yu T; Yin B
    Eur Radiol; 2023 Dec; 33(12):8912-8924. PubMed ID: 37498381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
    Basree MM; Li C; Um H; Bui AH; Liu M; Ahmed A; Tiwari P; McMillan AB; Baschnagel AM
    J Neurooncol; 2024 Jun; 168(2):307-316. PubMed ID: 38689115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases.
    Gutsche R; Lohmann P; Hoevels M; Ruess D; Galldiks N; Visser-Vandewalle V; Treuer H; Ruge M; Kocher M
    Radiother Oncol; 2022 Jan; 166():37-43. PubMed ID: 34801629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps.
    Wang H; Xue J; Qu T; Bernstein K; Chen T; Barbee D; Silverman JS; Kondziolka D
    Med Phys; 2021 Sep; 48(9):5522-5530. PubMed ID: 34287940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery.
    Mouraviev A; Detsky J; Sahgal A; Ruschin M; Lee YK; Karam I; Heyn C; Stanisz GJ; Martel AL
    Neuro Oncol; 2020 Jun; 22(6):797-805. PubMed ID: 31956919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI feature-based radiomics models to predict treatment outcome after stereotactic body radiotherapy for spinal metastases.
    Chen Y; Qin S; Zhao W; Wang Q; Liu K; Xin P; Yuan H; Zhuang H; Lang N
    Insights Imaging; 2023 Oct; 14(1):169. PubMed ID: 37817044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data.
    Cho SJ; Cho W; Choi D; Sim G; Jeong SY; Baik SH; Bae YJ; Choi BS; Kim JH; Yoo S; Han JH; Kim CY; Choo J; Sunwoo L
    Sci Rep; 2024 May; 14(1):11085. PubMed ID: 38750084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases.
    Liu X; Du P; Dai Z; Yi R; Liu W; Wu H; Geng D; Liu J
    Comput Biol Med; 2024 Jun; 175():108503. PubMed ID: 38688125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning.
    Jaberipour M; Soliman H; Sahgal A; Sadeghi-Naini A
    Sci Rep; 2021 Nov; 11(1):21620. PubMed ID: 34732781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics.
    Peng L; Parekh V; Huang P; Lin DD; Sheikh K; Baker B; Kirschbaum T; Silvestri F; Son J; Robinson A; Huang E; Ames H; Grimm J; Chen L; Shen C; Soike M; McTyre E; Redmond K; Lim M; Lee J; Jacobs MA; Kleinberg L
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):1236-1243. PubMed ID: 30353872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Key Clinical Variables and Radiological Manifestations Associated with the Treatment Response of Patients with Brain Metastases to Stereotactic Radiosurgery.
    Du P; Chen H; Shen L; Liu X; Chen J; Wu X; Yu T; Geng D
    J Clin Med; 2022 Aug; 11(15):. PubMed ID: 35956144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting stereotactic radiosurgery outcomes with multi-observer qualitative appearance labelling versus MRI radiomics.
    DeVries DA; Tang T; Albweady A; Leung A; Laba J; Johnson C; Lagerwaard F; Zindler J; Hajdok G; Ward AD
    Sci Rep; 2023 Nov; 13(1):20977. PubMed ID: 38017055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance sensitivity analysis of brain metastasis stereotactic radiosurgery outcome prediction using MRI radiomics.
    DeVries DA; Lagerwaard F; Zindler J; Yeung TPC; Rodrigues G; Hajdok G; Ward AD
    Sci Rep; 2022 Dec; 12(1):20975. PubMed ID: 36471160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases.
    Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can machine learning models improve early detection of brain metastases using diffusion weighted imaging-based radiomics?
    Madamesila J; Tchistiakova E; Faruqi S; Das S; Ploquin N
    Quant Imaging Med Surg; 2023 Dec; 13(12):7706-7718. PubMed ID: 38106308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.