BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37505287)

  • 1. Diatoms Reduce Decomposition of and Fungal Abundance on Less Recalcitrant Leaf Litter via Negative Priming.
    Feckler A; Baudy-Groh P; Friedrichs L; Gonçalves S; Lüderwald S; Risse-Buhl U; Bundschuh M
    Microb Ecol; 2023 Nov; 86(4):2674-2686. PubMed ID: 37505287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labile carbon 'primes' fungal use of nitrogen from submerged leaf litter.
    Soares M; Kritzberg ES; Rousk J
    FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28957586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming.
    Halvorson HM; Barry JR; Lodato MB; Findlay RH; Francoeur SN; Kuehn KA
    Funct Ecol; 2019 Jan; 33(1):188-201. PubMed ID: 31673197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.
    Kuehn KA; Francoeur SN; Findlay RH; Neely RK
    Ecology; 2014 Mar; 95(3):749-62. PubMed ID: 24804458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden Decomposers: the Role of Bacteria and Fungi in Recently Intermittent Alpine Streams Heterotrophic Pathways.
    Gruppuso L; Receveur JP; Fenoglio S; Bona F; Benbow ME
    Microb Ecol; 2023 Oct; 86(3):1499-1512. PubMed ID: 36646914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periphytic diatom colonization and litter decomposition in an intermittent stream of South India.
    Arulraj MS; Anbalagan S; Vijayan S
    J Basic Microbiol; 2019 May; 59(5):504-510. PubMed ID: 30811614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Sensitivity of Microbial Litter Decomposition in Freshwaters: Role of Leaf Litter Quality and Environmental Characteristics.
    Monroy S; Larrañaga A; Martínez A; Pérez J; Molinero J; Basaguren A; Pozo J
    Microb Ecol; 2023 Apr; 85(3):839-852. PubMed ID: 35654854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf Species-Dependent Fungicide Effects on the Function and Abundance of Associated Microbial Communities.
    Gonçalves S; Post R; Konschak M; Zubrod J; Feckler A; Bundschuh M
    Bull Environ Contam Toxicol; 2023 May; 110(5):92. PubMed ID: 37160617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sulfonamide antibiotics on aquatic microbial community composition and functions.
    Paumelle M; Donnadieu F; Joly M; Besse-Hoggan P; Artigas J
    Environ Int; 2021 Jan; 146():106198. PubMed ID: 33096465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment.
    David GM; Pimentel IM; Rehsen PM; Vermiert AM; Leese F; Gessner MO
    Sci Total Environ; 2024 Sep; 943():173669. PubMed ID: 38839005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality.
    Fabian J; Zlatanovic S; Mutz M; Premke K
    ISME J; 2017 Feb; 11(2):415-425. PubMed ID: 27983721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting habitats but comparable microbial decomposition in the benthic and hyporheic zone.
    Risse-Buhl U; Mendoza-Lera C; Norf H; Pérez J; Pozo J; Schlief J
    Sci Total Environ; 2017 Dec; 605-606():683-691. PubMed ID: 28675878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dieback and Replacement of Riparian Trees May Impact Stream Ecosystem Functioning.
    Alonso A; Boyero L; Solla A; Ferreira V
    Microb Ecol; 2024 Jan; 87(1):32. PubMed ID: 38228918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams.
    Fenoy E; Pradhan A; Pascoal C; Rubio-Ríos J; Batista D; Moyano-López FJ; Cássio F; Casas JJ
    Glob Chang Biol; 2022 Jan; 28(1):115-127. PubMed ID: 34651383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.