BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37505441)

  • 1. Multifarious characteristics of sulfur-oxidizing bacteria residing in rice rhizosphere.
    Nyamath S; Subburamu K; Kalyanasundaram GT; Balachandar D; Suresh M; Anandham R
    Folia Microbiol (Praha); 2024 Apr; 69(2):395-405. PubMed ID: 37505441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation.
    Nguyen PM; Do PT; Pham YB; Doan TO; Nguyen XC; Lee WK; Nguyen DD; Vadiveloo A; Um MJ; Ngo HH
    Sci Total Environ; 2022 Dec; 852():158203. PubMed ID: 36044953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of sulfur-oxidizing bacteria from fishponds and their performance to remove hydrogen sulfide under aquarium conditions.
    Dashtbin R; Mahmoudi N; Besharati H; Lalevic B
    Braz J Microbiol; 2023 Dec; 54(4):3163-3172. PubMed ID: 37819610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and screening of sulfur-oxidizing bacteria from coast of Bhavnagar, India, and formulation of consortium for bioremediation.
    Shinde AH; Sharma A; Doshi S; Kumar MA; Haldar S
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):54136-54149. PubMed ID: 35294687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.
    Stubner S; Wind T; Conrad R
    Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants.
    Anandham R; Indiragandhi P; Madhaiyan M; Ryu KY; Jee HJ; Sa TM
    Res Microbiol; 2008; 159(9-10):579-89. PubMed ID: 18832027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.
    Ng KY; Kamimura K; Sugio T
    J Biosci Bioeng; 2000; 90(2):193-8. PubMed ID: 16232841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of sulfur-oxidizing bacteria isolated from mustard (Brassica juncea L.) rhizosphere having the capability of improving sulfur and nitrogen uptake.
    Chaudhary S; Dhanker R; Singh K; Brar B; Goyal S
    J Appl Microbiol; 2022 Nov; 133(5):2814-2825. PubMed ID: 36260818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water.
    Zhang X; Zhang D; Huang Y; Wu S; Lu P
    Water Res; 2020 Oct; 185():116270. PubMed ID: 32784035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology and genetics of sulfur-oxidizing bacteria.
    Friedrich CG
    Adv Microb Physiol; 1998; 39():235-89. PubMed ID: 9328649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative metabolism of inorganic sulfur compounds by bacteria.
    Kelly DP; Shergill JK; Lu WP; Wood AP
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):95-107. PubMed ID: 9049021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of tetrathionate during the development of a biofilm in biogenic sulfuric acid attack on different cementitious materials.
    Aboulela A; Peyre Lavigne M; Pons T; Bounouba M; Schiettekatte M; Lepercq P; Mercade M; Patapy C; Meulenyzer S; Bertron A
    Sci Total Environ; 2022 Dec; 850():158031. PubMed ID: 35985586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term effects of thiosulfate on the competition between sulfur-mediated bacteria and glycogen accumulating organisms in sulfate-rich carbon-deficient wastewater.
    Zhou L; Li Z; Cheng B; Jiang J; Bi X; Wang Z; Chen G; Guo G
    Environ Res; 2024 Jan; 240(Pt 1):117596. PubMed ID: 37931736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
    Sorokin DY; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):251-62. PubMed ID: 15188891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate.
    Xin Y; Gao R; Cui F; Lü C; Liu H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae.
    Anandham R; Indiragandhi P; Madhaiyan M; Kim K; Yim W; Saravanan VS; Chung J; Sa T
    Can J Microbiol; 2007 Jul; 53(7):869-76. PubMed ID: 17898842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.