These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37505454)

  • 21. Surface Modification of PAN-Derived Commercial Graphite Felts Using Deep Eutectic Solvents for their Application as Electrodes in All-Vanadium Redox Flow Batteries.
    Murillo-Herrera LM; Aguilar ES; Thielke MW; Jorge Sobrido A
    Chem Asian J; 2023 Mar; 18(5):e202201208. PubMed ID: 36644964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of acetamide based deep eutectic solvents with dual cations for high performance and low temperature-tolerant aqueous zinc ion batteries via tuning the ratio of co-solvents.
    Chen TY; Lin TJ; Vedhanarayanan B; Shen HH; Lin TW
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):166-178. PubMed ID: 36152574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical Cell Design for PTMA-Based Organic Batteries: an Experimental and Modeling Study.
    Innocenti A; Moisés IÁ; Lužanin O; Bitenc J; Gohy JF; Passerini S
    ACS Appl Mater Interfaces; 2024 Sep; 16(37):48757-48770. PubMed ID: 37852614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries.
    Ji D; Kim J
    Nanomicro Lett; 2023 Nov; 16(1):2. PubMed ID: 37930432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilitating Charge Reactions in Al-S Batteries with Redox Mediators.
    Li H; Lampkin J; Garcia-Araez N
    ChemSusChem; 2021 Aug; 14(15):3139-3146. PubMed ID: 34086406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries.
    Schröter E; Stolze C; Saal A; Schreyer K; Hager MD; Schubert US
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6638-6648. PubMed ID: 35084188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General Design Methodology for Organic Eutectic Electrolytes toward High-Energy-Density Redox Flow Batteries.
    Zhang C; Chen H; Qian Y; Dai G; Zhao Y; Yu G
    Adv Mater; 2021 Apr; 33(15):e2008560. PubMed ID: 33687776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetamide-Caprolactam Deep Eutectic Solvent-Based Electrolyte for Stable Zn-Metal Batteries.
    Wang S; Liu G; Wan W; Li X; Li J; Wang C
    Adv Mater; 2024 Feb; 36(5):e2306546. PubMed ID: 37801323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferroelectric benzimidazole additive-induced interfacial water confinement for stable 2.2 V supercapacitor electrolytes exposed to air.
    Liang H; Shi R; Zhou Y; Jiang W; Kang Q; Zhang H; Liu K; Lian J; Bu Y
    Chem Commun (Camb); 2022 Aug; 58(68):9536-9539. PubMed ID: 35925566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research progress of organic liquid electrolyte for sodium ion battery.
    Zhang J; Li J; Wang H; Wang M
    Front Chem; 2023; 11():1253959. PubMed ID: 37780988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Progress in the application of deep eutectic solvents to extraction and separation technology].
    Zhao Z; Ji Y; Liu X; Zhao L
    Se Pu; 2021 Feb; 39(2):152-161. PubMed ID: 34227348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Eutectic Solvents: An Eco-friendly Design for Drug Engineering.
    Oyoun F; Toncheva A; Henríquez LC; Grougnet R; Laoutid F; Mignet N; Alhareth K; Corvis Y
    ChemSusChem; 2023 Oct; 16(20):e202300669. PubMed ID: 37463123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte.
    Mitchell NH; Elgrishi N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science.
    Nahar Y; Thickett SC
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33573280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.