These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37506011)

  • 1. Transfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectors.
    Altindis F; Banerjee A; Phlypo R; Yilmaz B; Congedo M
    IEEE J Biomed Health Inform; 2023 Oct; 27(10):4696-4706. PubMed ID: 37506011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel heterogeneous transfer learning method based on data stitching for the sequential coding brain computer interface.
    Zhan Q; Wang L; Ren L; Huang X
    Comput Biol Med; 2022 Dec; 151(Pt A):106220. PubMed ID: 36332422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system.
    Zheng M; Yang B; Xie Y
    Med Biol Eng Comput; 2020 Jul; 58(7):1515-1528. PubMed ID: 32394192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted Transfer Learning of Dynamic Time Warped Data for Motor Imagery based Brain Computer Interfaces.
    Giles J; Ang KK; Mihaylova L; Arvaneh M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2977-2980. PubMed ID: 33018631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach.
    He H; Wu D
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):399-410. PubMed ID: 31034407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic time warping-based transfer learning for improving common spatial patterns in brain-computer interface.
    Azab AM; Ahmadi H; Mihaylova L; Arvaneh M
    J Neural Eng; 2020 Feb; 17(1):016061. PubMed ID: 31860902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Learning: A Riemannian Geometry Framework With Applications to Brain-Computer Interfaces.
    Zanini P; Congedo M; Jutten C; Said S; Berthoumieu Y
    IEEE Trans Biomed Eng; 2018 May; 65(5):1107-1116. PubMed ID: 28841546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tangent space alignment: Transfer learning for Brain-Computer Interface.
    Bleuzé A; Mattout J; Congedo M
    Front Hum Neurosci; 2022; 16():1049985. PubMed ID: 36530202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MI-DABAN: A dual-attention-based adversarial network for motor imagery classification.
    Li H; Zhang D; Xie J
    Comput Biol Med; 2023 Jan; 152():106420. PubMed ID: 36529022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs.
    Ying J; Wei Q; Zhou X
    Sci Rep; 2022 Jun; 12(1):9818. PubMed ID: 35701505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-band target alignment common spatial pattern in brain-computer interface.
    Zhang X; She Q; Chen Y; Kong W; Mei C
    Comput Methods Programs Biomed; 2021 Aug; 207():106150. PubMed ID: 34034032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer learning for motor imagery based brain-computer interfaces: A tutorial.
    Wu D; Jiang X; Peng R
    Neural Netw; 2022 Sep; 153():235-253. PubMed ID: 35753202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tangent Space Features-Based Transfer Learning Classification Model for Two-Class Motor Imagery Brain-Computer Interface.
    Gaur P; McCreadie K; Pachori RB; Wang H; Prasad G
    Int J Neural Syst; 2019 Dec; 29(10):1950025. PubMed ID: 31711330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Deep Learning Techniques to Improve P300-Based Brain Computer Interfaces.
    Da I; Dui LG; Ferrante S; Pedrocchi A; Antonietti A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):4892-4902. PubMed ID: 35552154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Machine-Learning Methods for Brain-Computer Interfacing.
    Lv Z; Qiao L; Wang Q; Piccialli F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1688-1698. PubMed ID: 32750892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces.
    Zhang W; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2020 May; 28(5):1117-1127. PubMed ID: 32286993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-source online transfer algorithm based on source domain selection for EEG classification.
    Wu Z; She Q; Hou Z; Li Z; Tian K; Ma Y
    Math Biosci Eng; 2023 Jan; 20(3):4560-4573. PubMed ID: 36896512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.