These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A Cluster-Driven Adaptive Training Approach for Federated Learning. Jeong Y; Kim T Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146408 [TBL] [Abstract][Full Text] [Related]
6. Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data. Seol M; Kim T Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772192 [TBL] [Abstract][Full Text] [Related]
7. DSFedCon: Dynamic Sparse Federated Contrastive Learning for Data-Driven Intelligent Systems. Li Z; Chen J; Zhang P; Huang H; Li G IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38277248 [TBL] [Abstract][Full Text] [Related]
8. An EMD-Based Adaptive Client Selection Algorithm for Federated Learning in Heterogeneous Data Scenarios. Chen A; Fu Y; Sha Z; Lu G Front Plant Sci; 2022; 13():908814. PubMed ID: 35755701 [TBL] [Abstract][Full Text] [Related]
9. An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning. Meng X; Li Y; Lu J; Ren X Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005610 [TBL] [Abstract][Full Text] [Related]
10. Sparse Personalized Federated Learning. Liu X; Li Y; Wang Q; Zhang X; Shao Y; Geng Y IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028318 [TBL] [Abstract][Full Text] [Related]
11. Joint Client Selection and CPU Frequency Control in Wireless Federated Learning Networks with Power Constraints. Zhou Z; Shi S; Wang F; Zhang Y; Li Y Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628213 [TBL] [Abstract][Full Text] [Related]
12. Federated Learning on Clinical Benchmark Data: Performance Assessment. Lee GH; Shin SY J Med Internet Res; 2020 Oct; 22(10):e20891. PubMed ID: 33104011 [TBL] [Abstract][Full Text] [Related]
13. Federated Learning With Taskonomy for Non-IID Data. Jamali-Rad H; Abdizadeh M; Singh A IEEE Trans Neural Netw Learn Syst; 2022 Mar; PP():. PubMed ID: 35316193 [TBL] [Abstract][Full Text] [Related]
14. Exploring personalization via federated representation Learning on non-IID data. Jing C; Huang Y; Zhuang Y; Sun L; Xiao Z; Huang Y; Ding X Neural Netw; 2023 Jun; 163():354-366. PubMed ID: 37099898 [TBL] [Abstract][Full Text] [Related]
15. FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment. Wong YJ; Tham ML; Kwan BH; Owada Y Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904696 [TBL] [Abstract][Full Text] [Related]
16. Multi-Objective Distributed Client Selection in Federated Learning-Assisted Internet of Vehicles. Cha N; Chang L Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000959 [TBL] [Abstract][Full Text] [Related]
17. FedDSS: A data-similarity approach for client selection in horizontal federated learning. Nguyen TM; Poh KL; Chong SL; Lee JH Int J Med Inform; 2024 Dec; 192():105650. PubMed ID: 39423651 [TBL] [Abstract][Full Text] [Related]
18. APCSMA: Adaptive Personalized Client-Selection and Model-Aggregation Algorithm for Federated Learning in Edge Computing Scenarios. Ma X; Ma G; Liu Y; Qi S Entropy (Basel); 2024 Aug; 26(8):. PubMed ID: 39202182 [TBL] [Abstract][Full Text] [Related]
19. Privacy preserving federated learning for full heterogeneity. Chen K; Zhang X; Zhou X; Mi B; Xiao Y; Zhou L; Wu Z; Wu L; Wang X ISA Trans; 2023 Oct; 141():73-83. PubMed ID: 37105888 [TBL] [Abstract][Full Text] [Related]
20. Personalized federated learning for heterogeneous data: A distributed edge clustering approach. Firdaus M; Noh S; Qian Z; Larasati HT; Rhee KH Math Biosci Eng; 2023 Apr; 20(6):10725-10740. PubMed ID: 37322957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]