These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37506084)

  • 1. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach.
    Boregowda G; Mariappan P
    PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer.
    Gangadhara B; Mariappan P
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of high blood flow on heat distribution and ablation zone during microwave ablation-numerical approach.
    Boregowda G; Mariappan P
    Int J Numer Method Biomed Eng; 2024 Aug; 40(8):e3835. PubMed ID: 38800993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
    Tehrani MHH; Soltani M; Kashkooli FM; Raahemifar K
    PLoS One; 2020; 15(6):e0233219. PubMed ID: 32542034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental assessment of microwave ablation computational modeling with MR thermometry.
    Faridi P; Keselman P; Fallahi H; Prakash P
    Med Phys; 2020 Sep; 47(9):3777-3788. PubMed ID: 32506550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

  • 10. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study.
    Satish V; Repaka R
    Electromagn Biol Med; 2024 Apr; 43(1-2):125-134. PubMed ID: 38533761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.
    Ibitoye ZA; Nwoye EO; Aweda MA; Oremosu AA; Annunobi CC; Akanmu ON
    Med Eng Phys; 2015 Apr; 37(4):384-91. PubMed ID: 25686672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
    Deshazer G; Prakash P; Merck D; Haemmerich D
    Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation.
    Jin X; Feng Y; Zhu R; Qian L; Yang Y; Yu Q; Zou Z; Li W; Liu Y; Qian Z
    Int J Hyperthermia; 2022; 39(1):868-879. PubMed ID: 35858640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave Ablation in the Proximity of Surgical Clips: Is there a Safety Issue?
    Liebl M; Schulze-Hagen M; Zimmermann M; Pedersoli F; Kuhl C; Bruners P; Isfort P
    Cardiovasc Intervent Radiol; 2020 Jun; 43(6):918-923. PubMed ID: 32236668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of antenna designs for percutaneous microwave ablation.
    Huang H; Zhang L; Moser MAJ; Zhang W; Zhang B
    Phys Med; 2021 Apr; 84():254-264. PubMed ID: 33773908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of novel antenna for the treatment of hepatocellular carcinoma using finite element method.
    Maini S; Marwaha A
    Electromagn Biol Med; 2013 Sep; 32(3):373-81. PubMed ID: 23324105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.
    Ji Z; Brace CL
    Phys Med Biol; 2011 Aug; 56(16):5249-64. PubMed ID: 21791728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.