BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37506084)

  • 1. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach.
    Boregowda G; Mariappan P
    PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer.
    Gangadhara B; Mariappan P
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
    Tehrani MHH; Soltani M; Kashkooli FM; Raahemifar K
    PLoS One; 2020; 15(6):e0233219. PubMed ID: 32542034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of high blood flow on heat distribution and ablation zone during microwave ablation-numerical approach.
    Boregowda G; Mariappan P
    Int J Numer Method Biomed Eng; 2024 May; ():e3835. PubMed ID: 38800993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental assessment of microwave ablation computational modeling with MR thermometry.
    Faridi P; Keselman P; Fallahi H; Prakash P
    Med Phys; 2020 Sep; 47(9):3777-3788. PubMed ID: 32506550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

  • 10. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study.
    Satish V; Repaka R
    Electromagn Biol Med; 2024 Apr; 43(1-2):125-134. PubMed ID: 38533761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.
    Ibitoye ZA; Nwoye EO; Aweda MA; Oremosu AA; Annunobi CC; Akanmu ON
    Med Eng Phys; 2015 Apr; 37(4):384-91. PubMed ID: 25686672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
    Deshazer G; Prakash P; Merck D; Haemmerich D
    Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation.
    Jin X; Feng Y; Zhu R; Qian L; Yang Y; Yu Q; Zou Z; Li W; Liu Y; Qian Z
    Int J Hyperthermia; 2022; 39(1):868-879. PubMed ID: 35858640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave Ablation in the Proximity of Surgical Clips: Is there a Safety Issue?
    Liebl M; Schulze-Hagen M; Zimmermann M; Pedersoli F; Kuhl C; Bruners P; Isfort P
    Cardiovasc Intervent Radiol; 2020 Jun; 43(6):918-923. PubMed ID: 32236668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of antenna designs for percutaneous microwave ablation.
    Huang H; Zhang L; Moser MAJ; Zhang W; Zhang B
    Phys Med; 2021 Apr; 84():254-264. PubMed ID: 33773908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of novel antenna for the treatment of hepatocellular carcinoma using finite element method.
    Maini S; Marwaha A
    Electromagn Biol Med; 2013 Sep; 32(3):373-81. PubMed ID: 23324105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.
    Ji Z; Brace CL
    Phys Med Biol; 2011 Aug; 56(16):5249-64. PubMed ID: 21791728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.