These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37506322)

  • 1. New Class of High-Energy, High-Power Capacitive Devices Enabled by Stabilized Lithium Metal Anodes.
    Shaibani M; Abedin MJ; Sharifzadeh Mirshekarloo M; Griffith JC; Singh R; Aitchison P; Hill MR; Majumder M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37454-37466. PubMed ID: 37506322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-Based Deep Prelithiation for Lithium-Ion Capacitors with High Energy Density.
    Jeon S; Lm S; Kang I; Shin D; Yu SH; Lee M; Hong J
    Small; 2024 Feb; ():e2401295. PubMed ID: 38412421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes.
    Yin H; Tang J; Zhang K; Lin S; Xu G; Qin LC
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prelithiation Bridges the Gap for Developing Next-Generation Lithium-Ion Batteries/Capacitors.
    Li F; Cao Y; Wu W; Wang G; Qu D
    Small Methods; 2022 Jul; 6(7):e2200411. PubMed ID: 35680608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Lithium Polysulfides on the Formation of Solid Electrolyte Interfaces in Silicon Anodes.
    Krüger H; Cavers H; Offermann J; Polonskyi O; Adelung R; Hansen S
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36786479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural ore molybdenite as a high-capacity and cheap anode material for advanced lithium-ion capacitors.
    Li L; Wang H; Liang T; Cao JM; Yan C; Wu XL
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35294936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Li-Ion Capacitor Integrated with Nano-network-Structured Ni/NiO/C Anode and Nitrogen-Doped Carbonized Metal-Organic Framework Cathode with High Power and Long Cyclability.
    Cheng CF; Chen YM; Zou F; Liu K; Xia Y; Huang YF; Tung WY; Krishnan MR; Vogt BD; Wang CL; Ho RM; Zhu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30694-30702. PubMed ID: 31373480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.
    Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y
    Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode.
    Lin K; Xu X; Qin X; Liu M; Zhao L; Yang Z; Liu Q; Ye Y; Chen G; Kang F; Li B
    Nanomicro Lett; 2022 Jul; 14(1):149. PubMed ID: 35869171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing Li-ion capacitors through dual wet chemical prelithiation.
    Lai KL; Gao LY; Chang JK; Su YS
    J Colloid Interface Sci; 2024 Jun; 663():685-696. PubMed ID: 38430838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-reinforced Ni
    Deng XG; Fan LQ; Fu XY; Tang T; Lin SH; Chen L; Yu FD; Huang YF; Huang ML; Wu JH
    J Colloid Interface Sci; 2024 May; 661():237-248. PubMed ID: 38301462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal/LiF/Li
    Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y
    Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Electrode Materials for Nonaqueous Lithium-Ion Capacitors.
    Xu J; Gao B; Huo KF; Chu PK
    J Nanosci Nanotechnol; 2020 May; 20(5):2652-2667. PubMed ID: 31635600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries.
    Liu Q; Xu Y; Wang J; Zhao B; Li Z; Wu HB
    Nanomicro Lett; 2020 Aug; 12(1):176. PubMed ID: 34138174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Energy-Density and Long-Lifetime Lithium-Ion Battery Enabled by a Stabilized Li
    Zheng L; Yu A; Li G; Zhang J
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38706-38716. PubMed ID: 35993675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Safer High-Energy Lithium-Ion Capacitor Using Fast-Charging and Stable ω-Li
    Lan X; Liu X; Meng T; Yang S; Shen Y; Hu X
    Small Methods; 2023 Apr; 7(4):e2201290. PubMed ID: 36811324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Hierarchically Structured CoS Nanosheets: Li
    Wang YK; Liu MC; Cao J; Zhang HJ; Kong LB; Trudgeon DP; Li X; Walsh FC
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3709-3718. PubMed ID: 31860261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.