These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The human AMPKγ3 R225W mutation negatively impacts site-1 nucleotide binding and does not enhance basal AMPKγ3-associated activity nor glycogen production in human or mouse skeletal muscle. Eskesen NO; Kjøbsted R; Birk JB; Henriksen NS; Andersen NR; Ringholm S; Pilegaard H; Wojtaszewski JFP Acta Physiol (Oxf); 2024 Oct; 240(10):e14213. PubMed ID: 39171449 [TBL] [Abstract][Full Text] [Related]
3. Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle. Steenberg DE; Jørgensen NB; Birk JB; Sjøberg KA; Kiens B; Richter EA; Wojtaszewski JFP J Physiol; 2019 Jan; 597(1):89-103. PubMed ID: 30325018 [TBL] [Abstract][Full Text] [Related]
4. Gain of function AMP-activated protein kinase γ3 mutation (AMPKγ3R200Q) in pig muscle increases glycogen storage regardless of AMPK activation. Scheffler TL; Park S; Roach PJ; Gerrard DE Physiol Rep; 2016 Jun; 4(11):. PubMed ID: 27302990 [TBL] [Abstract][Full Text] [Related]
5. Role of the AMPKgamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle. Deshmukh AS; Glund S; Tom RZ; Zierath JR Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1388-94. PubMed ID: 19826102 [TBL] [Abstract][Full Text] [Related]
6. Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Rhein P; Desjardins EM; Rong P; Ahwazi D; Bonhoure N; Stolte J; Santos MD; Ovens AJ; Ehrlich AM; Sanchez Garcia JL; Ouyang Q; Yabut JM; Kjolby M; Membrez M; Jessen N; Oakhill JS; Treebak JT; Maire P; Scott JW; Sanders MJ; Descombes P; Chen S; Steinberg GR; Sakamoto K Mol Metab; 2021 Sep; 51():101228. PubMed ID: 33798773 [TBL] [Abstract][Full Text] [Related]
7. Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Maarbjerg SJ; Jørgensen SB; Rose AJ; Jeppesen J; Jensen TE; Treebak JT; Birk JB; Schjerling P; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E924-34. PubMed ID: 19654283 [TBL] [Abstract][Full Text] [Related]
8. Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns. Knudsen JR; Henriquez-Olguin C; Li Z; Jensen TE Exp Physiol; 2019 May; 104(5):704-714. PubMed ID: 30710396 [TBL] [Abstract][Full Text] [Related]
9. A Tbc1d1 Chen Q; Xie B; Zhu S; Rong P; Sheng Y; Ducommun S; Chen L; Quan C; Li M; Sakamoto K; MacKintosh C; Chen S; Wang HY Diabetologia; 2017 Feb; 60(2):336-345. PubMed ID: 27826658 [TBL] [Abstract][Full Text] [Related]
10. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Sylow L; Nielsen IL; Kleinert M; Møller LL; Ploug T; Schjerling P; Bilan PJ; Klip A; Jensen TE; Richter EA J Physiol; 2016 Sep; 594(17):4997-5008. PubMed ID: 27061726 [TBL] [Abstract][Full Text] [Related]
11. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Peifer-Weiß L; Al-Hasani H; Chadt A Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339185 [TBL] [Abstract][Full Text] [Related]
13. Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Jørgensen SB; Honeyman J; Oakhill JS; Fazakerley D; Stöckli J; Kemp BE; Steinberg GR Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E57-66. PubMed ID: 19435854 [TBL] [Abstract][Full Text] [Related]
14. Exercise increases TBC1D1 phosphorylation in human skeletal muscle. Jessen N; An D; Lihn AS; Nygren J; Hirshman MF; Thorell A; Goodyear LJ Am J Physiol Endocrinol Metab; 2011 Jul; 301(1):E164-71. PubMed ID: 21505148 [TBL] [Abstract][Full Text] [Related]
15. AMPK activation by prolonged stimulation with interleukin-1β contributes to the promotion of GLUT4 translocation in skeletal muscle cells. Takaguri A; Inoue S; Kubo T; Satoh K Cell Biol Int; 2016 Nov; 40(11):1204-1211. PubMed ID: 27569904 [TBL] [Abstract][Full Text] [Related]
16. Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Steinberg GR; Watt MJ; McGee SL; Chan S; Hargreaves M; Febbraio MA; Stapleton D; Kemp BE Appl Physiol Nutr Metab; 2006 Jun; 31(3):302-12. PubMed ID: 16770359 [TBL] [Abstract][Full Text] [Related]
17. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Hardie DG Proc Nutr Soc; 2011 Feb; 70(1):92-9. PubMed ID: 21067629 [TBL] [Abstract][Full Text] [Related]
18. Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice. Barnes BR; Long YC; Steiler TL; Leng Y; Galuska D; Wojtaszewski JF; Andersson L; Zierath JR Diabetes; 2005 Dec; 54(12):3484-9. PubMed ID: 16306365 [TBL] [Abstract][Full Text] [Related]
19. Effects of AMPK activation on insulin sensitivity and metabolism in leptin-deficient ob/ob mice. Zachariah Tom R; Garcia-Roves PM; Sjögren RJ; Jiang LQ; Holmström MH; Deshmukh AS; Vieira E; Chibalin AV; Björnholm M; Zierath JR Diabetes; 2014 May; 63(5):1560-71. PubMed ID: 24487023 [TBL] [Abstract][Full Text] [Related]
20. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. Lee WH; Lin RJ; Lin SY; Chen YC; Lin HM; Liang YC J Agric Food Chem; 2011 Dec; 59(24):12874-81. PubMed ID: 22098542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]