These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37506640)

  • 1. "Data fusion" quantitative read-across structure-activity-activity relationships (q-RASAARs) for the prediction of toxicities of binary and ternary antibiotic mixtures toward three bacterial species.
    Chatterjee M; Roy K
    J Hazard Mater; 2023 Oct; 459():132129. PubMed ID: 37506640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the binary and ternary mixture toxicity of antibiotics towards three bacteria based on QSAR investigation.
    Wang D; Wu X; Lin Z; Ding Y
    Environ Res; 2018 Apr; 162():127-134. PubMed ID: 29306204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and differences in combined toxicity of sulfonamides and other antibiotics towards bacteria for environmental risk assessment.
    Fang S; Wang D; Zhang X; Long X; Qin M; Lin Z; Liu Y
    Environ Monit Assess; 2016 Jul; 188(7):429. PubMed ID: 27334345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new parameter for quantitatively characterizing antibiotic hormesis: QSAR construction and joint toxic action judgment.
    Sun H; Yao J; Long Z; Luo R; Wang J; Liu SS; Tang L; Wu M
    J Hazard Mater; 2024 Nov; 479():135767. PubMed ID: 39255662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach for predicting the joint effects based on the enzyme-catalyzed kinetics.
    Zheng M; Yao Z; Lin Z; Fang S; Song C; Liu Y
    J Hazard Mater; 2016 Apr; 307():359-67. PubMed ID: 26826939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A QSAR-based mechanistic study on the combined toxicity of antibiotics and quorum sensing inhibitors against Escherichia coli.
    Wang D; Shi J; Xiong Y; Hu J; Lin Z; Qiu Y; Cheng J
    J Hazard Mater; 2018 Jan; 341():438-447. PubMed ID: 28826080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of mixture toxicity from the hormesis of a single chemical: A case study of combinations of antibiotics and quorum-sensing inhibitors with gram-negative bacteria.
    Wang T; Wang D; Lin Z; An Q; Yin C; Huang Q
    Chemosphere; 2016 May; 150():159-167. PubMed ID: 26901472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mixture toxicity of environmental contaminants containing sulfonamides and other antibiotics in Escherichia coli: Differences in both the special target proteins of individual chemicals and their effective combined concentration.
    Long X; Wang D; Lin Z; Qin M; Song C; Liu Y
    Chemosphere; 2016 Sep; 158():193-203. PubMed ID: 27269994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive binary mixture toxicity modeling of fluoroquinolones (FQs) and the projection of toxicity of hypothetical binary FQ mixtures: a combination of 2D-QSAR and machine-learning approaches.
    Chatterjee M; Roy K
    Environ Sci Process Impacts; 2024 Jan; 26(1):105-118. PubMed ID: 38073518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.
    Qin LT; Chen YH; Zhang X; Mo LY; Zeng HH; Liang YP
    Chemosphere; 2018 May; 198():122-129. PubMed ID: 29421720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormetic dose-dependent response about typical antibiotics and their mixtures on plasmid conjugative transfer of Escherichia coli and its relationship with toxic effects on growth.
    Li X; Shi J; Sun H; Lin Z
    Ecotoxicol Environ Saf; 2020 Dec; 205():111300. PubMed ID: 32961492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning - based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees.
    Chatterjee M; Banerjee A; Tosi S; Carnesecchi E; Benfenati E; Roy K
    J Hazard Mater; 2023 Oct; 460():132358. PubMed ID: 37634379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical similarity and machine learning-based approaches for the prediction of aquatic toxicity of binary and multicomponent pharmaceutical and pesticide mixtures against Aliivibrio fischeri.
    Chatterjee M; Roy K
    Chemosphere; 2022 Dec; 308(Pt 3):136463. PubMed ID: 36122748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive in silico models for aquatic toxicity of cosmetic and personal care additive mixtures.
    Yang YT; Ni HG
    Water Res; 2023 Jun; 236():119981. PubMed ID: 37084578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships.
    Sigurnjak Bureš M; Ukić Š; Cvetnić M; Prevarić V; Markić M; Rogošić M; Kušić H; Bolanča T
    Environ Pollut; 2021 Apr; 275():115885. PubMed ID: 33581639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute toxicity of binary mixtures for quorum sensing inhibitors and sulfonamides against
    Long Z; Yao J; Wu M; Liu SS; Tang L; Lei B; Wang J; Sun H
    Curr Res Toxicol; 2024; 6():100172. PubMed ID: 38803613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri.
    Zou X; Lin Z; Deng Z; Yin D
    Chemosphere; 2013 Feb; 90(7):2070-6. PubMed ID: 23200841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment.
    Zou X; Zhou X; Lin Z; Deng Z; Yin D
    Environ Monit Assess; 2013 Jun; 185(6):4513-27. PubMed ID: 23143826
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 May; 5(3):773-787. PubMed ID: 30090388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of toxic mechanisms and mode of action to three different levels of species for 14 antibiotics based on interspecies correlation, excess toxicity, and QSAR.
    Li JJ; Yue YX; Jiang JF; Shi SJ; Wu HX; Zhao YH; Che FF
    Chemosphere; 2023 Mar; 317():137795. PubMed ID: 36632953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.