BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37506650)

  • 1. Proteome of Agave angustifolia Haw.: Uncovering metabolic alterations, over-accumulation of amino acids, and compensatory pathways in chloroplast-deficient albino plantlets.
    Andrade-Marcial M; Ruíz-May E; Elizalde-Contreras JM; Pacheco N; Herrera-Pool E; De-la-Peña C
    Plant Physiol Biochem; 2023 Aug; 201():107902. PubMed ID: 37506650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis reveals molecular mechanisms underlying chloroplast biogenesis in albino Agave angustifolia plantlets.
    Andrade-Marcial M; Pacheco-Arjona R; Hernández-Castellano S; Che-Aguilar L; De-la-Peña C
    Physiol Plant; 2024; 176(2):e14289. PubMed ID: 38606618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agave angustifolia albino plantlets lose stomatal physiology function by changing the development of the stomatal complex due to a molecular disruption.
    Sara HC; René GH; Rosa UC; Angela KG; Clelia DL
    Mol Genet Genomics; 2020 May; 295(3):787-805. PubMed ID: 31925511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior.
    Andrade-Marcial M; Pacheco-Arjona R; Góngora-Castillo E; De-la-Peña C
    BMC Plant Biol; 2022 Jul; 22(1):352. PubMed ID: 35850575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of molecular and epigenetic changes in the albinism of Agave angustifolia Haw.
    Us-Camas R; Castillo-Castro E; Aguilar-Espinosa M; Limones-Briones V; Rivera-Madrid R; Robert-Díaz ML; De-la-Peña C
    Plant Sci; 2017 Oct; 263():156-167. PubMed ID: 28818371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process.
    Duarte-Aké F; Castillo-Castro E; Pool FB; Espadas F; Santamaría JM; Robert ML; De-la-Peña C
    Plant Cell Rep; 2016 Dec; 35(12):2489-2502. PubMed ID: 27590059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An additional role for chloroplast proteins-an amino acid reservoir for energy production during sugar starvation.
    Izumi M; Ishida H
    Plant Signal Behav; 2019; 14(1):1552057. PubMed ID: 30507341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chloroplast proteome response to drought stress in cassava leaves.
    Chang L; Wang L; Peng C; Tong Z; Wang D; Ding G; Xiao J; Guo A; Wang X
    Plant Physiol Biochem; 2019 Sep; 142():351-362. PubMed ID: 31422174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development of Arabidopsis thaliana chloroplasts.
    de Luna-Valdez LA; Martínez-Batallar AG; Hernández-Ortiz M; Encarnación-Guevara S; Ramos-Vega M; López-Bucio JS; León P; Guevara-García AA
    J Proteomics; 2014 Dec; 111():148-64. PubMed ID: 25154054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.
    Shi K; Gu J; Guo H; Zhao L; Xie Y; Xiong H; Li J; Zhao S; Song X; Liu L
    PLoS One; 2017; 12(5):e0177992. PubMed ID: 28542341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 38-amino-acid sequence encompassing the arm domain of the cucumber necrosis virus coat protein functions as a chloroplast transit Peptide in infected plants.
    Xiang Y; Kakani K; Reade R; Hui E; Rochon D
    J Virol; 2006 Aug; 80(16):7952-64. PubMed ID: 16873252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydration-induced alterations in chloroplast proteome and reprogramming of cellular metabolism in developing chickpea delineate interrelated adaptive responses.
    Lande NV; Barua P; Gayen D; Kumar S; Varshney S; Sengupta S; Chakraborty S; Chakraborty N
    Plant Physiol Biochem; 2020 Jan; 146():337-348. PubMed ID: 31785520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic dissection of the chloroplast: Moving beyond photosynthesis.
    Lande NV; Barua P; Gayen D; Kumar S; Chakraborty S; Chakraborty N
    J Proteomics; 2020 Feb; 212():103542. PubMed ID: 31704367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Chloroplast Outer Membrane Proteome and Associated Targeting Pathways.
    Fish M; Nash D; German A; Overton A; Jelokhani-Niaraki M; Chuong SDX; Smith MD
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops.
    Razi K; Muneer S
    Crit Rev Biotechnol; 2021 Aug; 41(5):669-691. PubMed ID: 33525946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloroplasts Protein Quality Control and Turnover: A Multitude of Mechanisms.
    Fu Y; Li X; Fan B; Zhu C; Chen Z
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features.
    Terashima M; Specht M; Hippler M
    Curr Genet; 2011 Jun; 57(3):151-68. PubMed ID: 21533645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants.
    Ling Q; Jarvis P
    Curr Biol; 2015 Oct; 25(19):2527-34. PubMed ID: 26387714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis.
    Wang Y; Li X; Liu N; Wei S; Wang J; Qin F; Suo B
    BMC Plant Biol; 2020 Mar; 20(1):96. PubMed ID: 32131734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development.
    Motohashi R; Yamazaki T; Myouga F; Ito T; Ito K; Satou M; Kobayashi M; Nagata N; Yoshida S; Nagashima A; Tanaka K; Takahashi S; Shinozaki K
    Plant Mol Biol; 2007 Jul; 64(5):481-97. PubMed ID: 17450416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.