BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37506731)

  • 1. Hostile Hemodynamics in Distal Stent Graft-Induced New Entry Prior to Aortic Rupture: A Comparison of Transient versus Steady-State CFD Simulations.
    Osswald A; Tsagakis K; Demircioglu E; Weymann A; Zubarevich A; Ruhparwar A; Karmonik C
    Thorac Cardiovasc Surg; 2024 Mar; 72(2):134-141. PubMed ID: 37506731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First insights into the role of wall shear stress in the development of a distal stent graft induced new entry through computational fluid dynamics simulations.
    Osswald A; Weymann A; Tsagakis K; Zubarevich A; Thielmann M; Schmack B; Ruhparwar A; Karmonik C
    J Thorac Dis; 2023 Feb; 15(2):281-290. PubMed ID: 36910066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of aorta distal to stent in the occurrence of distal stent graft-induced new entry tear: A computational fluid dynamics and morphological study.
    Luan J; Qiao Y; Mao L; Fan J; Zhu T; Luo K
    Comput Biol Med; 2023 Nov; 166():107554. PubMed ID: 37839217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Thoracic Endografting on the Hemodynamics of the Native Aorta: Pre- and Postoperative Assessments of Wall Shear Stress and Vorticity Using Computational Fluid Dynamics.
    Midulla M; Moreno R; Negre-Salvayre A; Beregi JP; Haulon S; Loffroy R; Dake M; Rousseau H
    J Endovasc Ther; 2021 Feb; 28(1):63-69. PubMed ID: 33025866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of turbulent blood flow and wall shear stress in aortic coarctation using image-based simulations.
    Perinajová R; Juffermans JF; Mercado JL; Aben JP; Ledoux L; Westenberg JJM; Lamb HJ; Kenjereš S
    Biomed Eng Online; 2021 Aug; 20(1):84. PubMed ID: 34419047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Wall Shear Stress Is Related to Atherosclerotic Plaque Rupture in the Aortic Arch of Patients with Cardiovascular Disease: A Study with Computational Fluid Dynamics Model and Non-Obstructive General Angioscopy.
    Kojima K; Hiro T; Koyama Y; Ohgaku A; Fujito H; Ebuchi Y; Arai R; Monden M; Migita S; Morikawa T; Tamaki T; Murata N; Akutsu N; Nishida T; Kitano D; Sudo M; Fukamachi D; Yoda S; Takayama T; Hirayama A; Okumura Y
    J Atheroscler Thromb; 2021 Jul; 28(7):742-753. PubMed ID: 33012739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamic parameters impact the stability of distal stent graft-induced new entry.
    Wang K; Armour CH; Ma T; Dong Z; Xu XY
    Sci Rep; 2023 Jul; 13(1):12123. PubMed ID: 37495611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD).
    Etli M; Canbolat G; Karahan O; Koru M
    Med Biol Eng Comput; 2021 Jan; 59(1):71-84. PubMed ID: 33225424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational fluid dynamics study pre- and post-stent graft placement in an acute type B aortic dissection.
    Karmonik C; Bismuth J; Davies MG; Shah DJ; Younes HK; Lumsden AB
    Vasc Endovascular Surg; 2011 Feb; 45(2):157-64. PubMed ID: 21156714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time.
    Mutlu O; Salman HE; Al-Thani H; El-Menyar A; Qidwai UA; Yalcin HC
    Comput Biol Med; 2023 Mar; 154():106609. PubMed ID: 36724610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations into the Potential of Using Open Source CFD to Analyze the Differences in Hemodynamic Parameters for Aortic Dissections (Healthy versus Stanford Type A and B).
    Takeda R; Sato F; Yokoyama H; Sasaki K; Oshima N; Kuroda A; Takashima H; Li C; Honda S; Kamiya H
    Ann Vasc Surg; 2022 Feb; 79():310-323. PubMed ID: 34648855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas.
    Perinajová R; Juffermans JF; Westenberg JJM; van der Palen RLF; van den Boogaard PJ; Lamb HJ; Kenjereš S
    Comput Biol Med; 2021 Jun; 133():104385. PubMed ID: 33894502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative comparison of hemodynamic parameters from steady and transient CFD simulations in cerebral aneurysms with focus on the aneurysm ostium.
    Karmonik C; Diaz O; Klucznik R; Grossman RG; Zhang YJ; Britz G; Lv N; Huang Q
    J Neurointerv Surg; 2015 May; 7(5):367-72. PubMed ID: 24721753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.
    Karmonik C; Partovi S; Loebe M; Schmack B; Weymann A; Lumsden AB; Karck M; Ruhparwar A
    J Thorac Cardiovasc Surg; 2014 Apr; 147(4):1326-1333.e1. PubMed ID: 24345553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of numerical simulation methods in aortic arch using 4D Flow MRI.
    Miyazaki S; Itatani K; Furusawa T; Nishino T; Sugiyama M; Takehara Y; Yasukochi S
    Heart Vessels; 2017 Aug; 32(8):1032-1044. PubMed ID: 28444501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.