These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37506731)

  • 21. Hemodynamic determinants of aortic dissection propagation by 2D computational modeling: implications for endovascular stent-grafting.
    Chitsaz S; Azadani AN; Matthews PB; Chuter TA; Tseng EE; Ge L
    J Cardiovasc Surg (Torino); 2012 Oct; 53(5):631-40. PubMed ID: 22820737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.
    Tse KM; Chiu P; Lee HP; Ho P
    J Biomech; 2011 Mar; 44(5):827-36. PubMed ID: 21256491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Longitudinal morphological changes of the aorta and the endograft position before and after distal stent graft-induced new entry in aortic dissections.
    Andic M; Mustafi M; Bonorden C; Grözinger G; Artzner C; Schlensak C; Lescan M
    Eur J Cardiothorac Surg; 2022 Dec; 63(1):. PubMed ID: 36477549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elevated Wall Shear Stress in Aortic Type B Dissection May Relate to Retrograde Aortic Type A Dissection: A Computational Fluid Dynamics Pilot Study.
    Osswald A; Karmonik C; Anderson JR; Rengier F; Karck M; Engelke J; Kallenbach K; Kotelis D; Partovi S; Böckler D; Ruhparwar A
    Eur J Vasc Endovasc Surg; 2017 Sep; 54(3):324-330. PubMed ID: 28716447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta.
    Karmonik C; Müller-Eschner M; Partovi S; Geisbüsch P; Ganten MK; Bismuth J; Davies MG; Böckler D; Loebe M; Lumsden AB; von Tengg-Kobligk H
    Vasc Endovascular Surg; 2013 Nov; 47(8):625-31. PubMed ID: 24048257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distal Stent Graft-Induced New Entry after Total Arch Replacement with Frozen Elephant Trunk for Aortic Dissection.
    Nomura Y; Tonoki S; Kawashima M; Fujisue J; Uchino G; Miyahara S; Tanaka H; Honda T; Mukohara N; Murakami H
    Ann Vasc Dis; 2021 Dec; 14(4):362-367. PubMed ID: 35082941
    [No Abstract]   [Full Text] [Related]  

  • 28. Computational fluid dynamics simulation of hemodynamic changes in a hemodialysis patient with central venous stenosis treated with stent.
    Chen B; Dai H; Yang J; Tang K; Zhang G; Xiang X; Lin R; Huang Y
    Semin Dial; 2022 Nov; 35(6):528-533. PubMed ID: 35018652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic simulation of abdominal aortic aneurysm on idealised models: Investigation of stress parameters during disease progression.
    Philip NT; Patnaik BSV; Sudhir BJ
    Comput Methods Programs Biomed; 2022 Jan; 213():106508. PubMed ID: 34800807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance.
    Campobasso R; Condemi F; Viallon M; Croisille P; Campisi S; Avril S
    Cardiovasc Eng Technol; 2018 Dec; 9(4):707-722. PubMed ID: 30341731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subject-specific aortic wall shear stress estimations using semi-automatic segmentation.
    Renner J; Nadali Najafabadi H; Modin D; Länne T; Karlsson M
    Clin Physiol Funct Imaging; 2012 Nov; 32(6):481-91. PubMed ID: 23031070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Geometric Accuracy at the Proximal Landing Zone on Simulation Results for Thoracic Endovascular Repair Patients.
    Qiu Y; Dong S; Liu Z; Yuan D; Zheng T
    Cardiovasc Eng Technol; 2020 Dec; 11(6):679-688. PubMed ID: 33145725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection.
    Cheng Z; Riga C; Chan J; Hamady M; Wood NB; Cheshire NJ; Xu Y; Gibbs RG
    J Vasc Surg; 2013 Feb; 57(2 Suppl):35S-43S. PubMed ID: 23336853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer modeling for the prediction of thoracic aortic stent graft collapse.
    Pasta S; Cho JS; Dur O; Pekkan K; Vorp DA
    J Vasc Surg; 2013 May; 57(5):1353-61. PubMed ID: 23313184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reliability of using generic flow conditions to quantify aneurysmal haemodynamics: A comparison against simulations incorporating boundary conditions measured in vivo.
    Li B; Liu T; Liu J; Liu Y; Cao B; Zhao X; Wang W; Shi M; Zhang L; Xu K; Chen M; Wen C; Zhang M
    Comput Methods Programs Biomed; 2022 Oct; 225():107034. PubMed ID: 35914441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.
    Midulla M; Moreno R; Baali A; Chau M; Negre-Salvayre A; Nicoud F; Pruvo JP; Haulon S; Rousseau H
    Eur Radiol; 2012 Oct; 22(10):2094-102. PubMed ID: 22645039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional modelling and hemodynamic simulation of the closure of multiple entry tears in type B aortic dissection.
    Liu H; Zhao G; Zhang GE; Xiong F; Hu S; Ouyang Y; Xiong F
    Med Phys; 2024 Jan; 51(1):42-53. PubMed ID: 38038366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.