BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37506818)

  • 21. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?
    Lincet H; Icard P
    Oncogene; 2015 Jul; 34(29):3751-9. PubMed ID: 25263450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei.
    Albert MA; Haanstra JR; Hannaert V; Van Roy J; Opperdoes FR; Bakker BM; Michels PA
    J Biol Chem; 2005 Aug; 280(31):28306-15. PubMed ID: 15955817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose 6-Phosphate Accumulates via Phosphoglucose Isomerase Inhibition in Heart Muscle.
    Karlstaedt A; Khanna R; Thangam M; Taegtmeyer H
    Circ Res; 2020 Jan; 126(1):60-74. PubMed ID: 31698999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bistability in glycolysis pathway as a physiological switch in energy metabolism.
    Mulukutla BC; Yongky A; Daoutidis P; Hu WS
    PLoS One; 2014; 9(6):e98756. PubMed ID: 24911170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.
    Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B
    Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A metabolic control analysis approach to introduce the study of systems in biochemistry: the glycolytic pathway in the red blood cell.
    Angelani CR; Carabias P; Cruz KM; Delfino JM; de Sautu M; Espelt MV; Ferreira-Gomes MS; Gómez GE; Mangialavori IC; Manzi M; Pignataro MF; Saffioti NA; Salvatierra Fréchou DM; Santos J; Schwarzbaum PJ
    Biochem Mol Biol Educ; 2018 Sep; 46(5):502-515. PubMed ID: 30281891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo identification of the steps that control energy metabolism and survival of Entamoeba histolytica.
    Pineda E; Encalada R; Vázquez C; Néquiz M; Olivos-García A; Moreno-Sánchez R; Saavedra E
    FEBS J; 2015 Jan; 282(2):318-31. PubMed ID: 25350227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis.
    Schwartz JM; Kanehisa M
    BMC Bioinformatics; 2006 Apr; 7():186. PubMed ID: 16584566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymes of glucose metabolism in cultured human gliomas: neoplasia is accompanied by altered hexokinase, phosphofructokinase, and glucose-6-phosphate dehydrogenase levels.
    Dominguez JE; Graham JF; Cummins CJ; Loreck DJ; Galarraga J; Van der Feen J; DeLaPaz R; Smith BH
    Metab Brain Dis; 1987 Mar; 2(1):17-30. PubMed ID: 2974916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The regulatory role for magnesium in glycolytic flux of the human erythrocyte.
    Laughlin MR; Thompson D
    J Biol Chem; 1996 Nov; 271(46):28977-83. PubMed ID: 8910548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of metabolic-control logic to fuel utilization and its significance in tumor cells.
    Newsholme EA; Board M
    Adv Enzyme Regul; 1991; 31():225-46. PubMed ID: 1877389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes.
    Cortassa S; Caceres V; Bell LN; O'Rourke B; Paolocci N; Aon MA
    Biophys J; 2015 Jan; 108(1):163-72. PubMed ID: 25564863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental determination of control of glycolysis in Lactococcus lactis.
    Koebmann BJ; Andersen HW; Solem C; Jensen PR
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms.
    Marín-Hernández A; Gallardo-Pérez JC; Ralph SJ; Rodríguez-Enríquez S; Moreno-Sánchez R
    Mini Rev Med Chem; 2009 Aug; 9(9):1084-101. PubMed ID: 19689405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pancreatic islet discrimination of hexose anomers. I. Steady-state computer simulation.
    Achs MJ; Garfinkel D
    Am J Physiol; 1988 Aug; 255(2 Pt 1):E189-200. PubMed ID: 2970227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies.
    Mathupala SP; Ko YH; Pedersen PL
    Biochim Biophys Acta; 2010; 1797(6-7):1225-30. PubMed ID: 20381449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of cadmium and mercury on the upper part of skeletal muscle glycolysis in mice.
    Ramírez-Bajo MJ; de Atauri P; Ortega F; Westerhoff HV; Gelpí JL; Centelles JJ; Cascante M
    PLoS One; 2014; 9(1):e80018. PubMed ID: 24489641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control analysis of rat liver glycolysis under different glucose concentrations. The substrate approach and the role of glucokinase.
    Meléndez-Hevia E; Mateo F; Torres NV
    Mol Cell Biochem; 1992 Sep; 115(1):1-9. PubMed ID: 1435758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A modelling study of feedforward activation in human erythrocyte glycolysis.
    Bali M; Thomas SR
    C R Acad Sci III; 2001 Mar; 324(3):185-99. PubMed ID: 11291305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Control Analysis for Drug Target Prioritization in Trypanosomatids.
    González-Chávez Z; Vázquez C; Moreno-Sánchez R; Saavedra E
    Methods Mol Biol; 2020; 2116():689-718. PubMed ID: 32221950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.