BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37506820)

  • 1. Control analysis in the identification of key enzymes driving metabolic adaptations: Towards drug target discovery.
    de Atauri P; Foguet C; Cascante M
    Biosystems; 2023 Sep; 231():104984. PubMed ID: 37506820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling.
    Saavedra E; González-Chávez Z; Moreno-Sánchez R; Michels PAM
    Curr Med Chem; 2019; 26(36):6652-6671. PubMed ID: 30221599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of control and distribution of adaptive mutations in a metabolic pathway.
    Wright KM; Rausher MD
    Genetics; 2010 Feb; 184(2):483-502. PubMed ID: 19966064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions.
    Zhou J; Zhuang Y; Xia J
    Microb Cell Fact; 2021 Jun; 20(1):125. PubMed ID: 34193117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in the development of constraint-based genome-scale metabolic network models].
    Zhou J; Liu P; Xia J; Zhuang Y
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1526-1540. PubMed ID: 34085441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways.
    Moreno-Sánchez R; Saavedra E; Rodríguez-Enríquez S; Olín-Sandoval V
    J Biomed Biotechnol; 2008; 2008():597913. PubMed ID: 18629230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Control Analysis for Drug Target Prioritization in Trypanosomatids.
    González-Chávez Z; Vázquez C; Moreno-Sánchez R; Saavedra E
    Methods Mol Biol; 2020; 2116():689-718. PubMed ID: 32221950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. k-OptForce: integrating kinetics with flux balance analysis for strain design.
    Chowdhury A; Zomorrodi AR; Maranas CD
    PLoS Comput Biol; 2014 Feb; 10(2):e1003487. PubMed ID: 24586136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway thermodynamics highlights kinetic obstacles in central metabolism.
    Noor E; Bar-Even A; Flamholz A; Reznik E; Liebermeister W; Milo R
    PLoS Comput Biol; 2014 Feb; 10(2):e1003483. PubMed ID: 24586134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization-based metabolic control analysis.
    Uygun K; Uygun B; Matthew HW; Huang Y
    Biotechnol Prog; 2010; 26(6):1567-79. PubMed ID: 20967921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation.
    de Atauri P; Benito A; Vizán P; Zanuy M; Mangues R; Marín S; Cascante M
    Biochim Biophys Acta; 2011 Jun; 1807(6):746-54. PubMed ID: 21185256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Flux Control Coefficients from transient metabolite concentrations.
    Delgado J; Liao JC
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):919-27. PubMed ID: 1554375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms.
    Watson E; Yilmaz LS; Walhout AJ
    Annu Rev Genet; 2015; 49():553-75. PubMed ID: 26631516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting functional associations from metabolism using bi-partite network algorithms.
    Veeramani B; Bader JS
    BMC Syst Biol; 2010 Jul; 4():95. PubMed ID: 20630077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.
    Delgado J; Liao JC
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):965-72. PubMed ID: 1497632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress and application of metabolic network model based on enzyme constraints].
    Zhao X; Yang X; Mao Z; Ma H
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1914-1924. PubMed ID: 31668038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel paradigm for potential drug-targets discovery: quantifying relationships of enzymes and cascade interactions of neighboring biological processes to identify drug-targets.
    Chen L; Wang Q; Zhang L; Tai J; Wang H; Li W; Li X; He W; Li X
    Mol Biosyst; 2011 Apr; 7(4):1033-41. PubMed ID: 21270979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic control analysis as a strategy to identify therapeutic targets, the case of cancer glycolysis.
    Marín-Hernández Á; Saavedra E
    Biosystems; 2023 Sep; 231():104986. PubMed ID: 37506818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.