These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37507108)

  • 1. Orthogonal Gelations to Synthesize Core-Shell Hydrogels Loaded with Nanoemulsion-Templated Drug Nanoparticles for Versatile Oral Drug Delivery.
    Attia L; Chen LH; Doyle PS
    Adv Healthc Mater; 2023 Dec; 12(31):e2301667. PubMed ID: 37507108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-Shell Composite Hydrogels for Controlled Nanocrystal Formation and Release of Hydrophobic Active Pharmaceutical Ingredients.
    Badruddoza AZ; Godfrin PD; Myerson AS; Trout BL; Doyle PS
    Adv Healthc Mater; 2016 Aug; 5(15):1960-8. PubMed ID: 27249402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-directed and ionically forced polyphosphate coacervation: a versatile and reversible core-shell system for drug delivery.
    Müller WEG; Tolba E; Wang S; Neufurth M; Lieberwirth I; Ackermann M; Schröder HC; Wang X
    Sci Rep; 2020 Oct; 10(1):17147. PubMed ID: 33051468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoemulsion-Loaded Capsules for Controlled Delivery of Lipophilic Active Ingredients.
    Chen LH; Cheng LC; Doyle PS
    Adv Sci (Weinh); 2020 Oct; 7(20):2001677. PubMed ID: 33101868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery.
    Zavgorodnya O; Carmona-Moran CA; Kozlovskaya V; Liu F; Wick TM; Kharlampieva E
    J Colloid Interface Sci; 2017 Nov; 506():589-602. PubMed ID: 28759859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Use of a Thermogelling Methylcellulose Nanoemulsion to Formulate Nanocrystalline Oral Dosage Forms.
    Chen LH; Doyle PS
    Adv Mater; 2021 Jul; 33(29):e2008618. PubMed ID: 34096099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface.
    Luo R; Cao Y; Shi P; Chen CH
    Small; 2014 Dec; 10(23):4886-94. PubMed ID: 25059988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Hydrogels for On-Demand Therapy.
    Oliva N; Conde J; Wang K; Artzi N
    Acc Chem Res; 2017 Apr; 50(4):669-679. PubMed ID: 28301139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery.
    Chalanqui MJ; Pentlavalli S; McCrudden C; Chambers P; Ziminska M; Dunne N; McCarthy HO
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():409-421. PubMed ID: 30573265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained co-delivery of ibuprofen and basic fibroblast growth factor by thermosensitive nanoparticle hydrogel as early local treatment of peri-implantitis.
    Chen W; Zhi M; Feng Z; Gao P; Yuan Y; Zhang C; Wang Y; Dong A
    Int J Nanomedicine; 2019; 14():1347-1358. PubMed ID: 30863065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic Generation of Pulsatile and Sequential Therapeutic Delivery Profiles from Calcium-Crosslinked Alginate Hydrogels.
    Emi T; Michaud K; Orton E; Santilli G; Linh C; O'Connell M; Issa F; Kennedy S
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer.
    Wei X; Liu C; Wang Z; Luo Y
    Int J Pharm; 2020 Apr; 580():119219. PubMed ID: 32165221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel Microparticle-Templated Anti-Solvent Crystallization of Small-Molecule Drugs.
    Bora M; Hsu MN; Khan SA; Doyle PS
    Adv Healthc Mater; 2022 Apr; 11(8):e2102252. PubMed ID: 34936230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential intracellular release of water-soluble cargos from Shell-crosslinked polymersomes.
    Du F; Bobbala S; Yi S; Scott EA
    J Control Release; 2018 Jul; 282():90-100. PubMed ID: 29601932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-Responsive Hydrogels Encapsulating Targeted Core-Shell Nanoparticles as Injectable Drug Delivery Systems.
    Ertugral-Samgar EG; Ozmen AM; Gok O
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of a pH/temperature-dual responsive hydrogel with promising biocompatibility features for stimuli-responsive 5-FU delivery.
    Suryavanshi P; Mahajan S; Banerjee SK; Seth K; Banerjee S
    J Mater Chem B; 2024 May; 12(21):5098-5110. PubMed ID: 38700289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pH/redox-dual responsive, nanoemulsion-embedded hydrogel for efficient oral delivery and controlled intestinal release of magnesium ions.
    Huang Y; Wang Z; Zhang G; Ren J; Yu L; Liu X; Yang Y; Ravindran A; Wong C; Chen R
    J Mater Chem B; 2021 Feb; 9(7):1888-1895. PubMed ID: 33533362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand
    Gong X; Hou C; Zhang Q; Li Y; Wang H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51225-51235. PubMed ID: 33164509
    [No Abstract]   [Full Text] [Related]  

  • 20. Injectable Supramolecular Polymer-Nanoparticle Hydrogels for Cell and Drug Delivery Applications.
    Meis CM; Grosskopf AK; Correa S; Appel EA
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.