These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37507406)

  • 1. Subunit gating resulting from individual protonation events in Kir2 channels.
    Maksaev G; Bründl-Jirout M; Stary-Weinzinger A; Zangerl-Plessl EM; Lee SJ; Nichols CG
    Nat Commun; 2023 Jul; 14(1):4538. PubMed ID: 37507406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit gating resulting from individual protonation events in Kir2 channels.
    Maksaev G; Bründl-Jirout M; Stary-Weinzinger A; Zangerl-Plessl EM; Lee SJ; Nichols CG
    Res Sq; 2023 Mar; ():. PubMed ID: 36993294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels.
    Zangerl-Plessl EM; Lee SJ; Maksaev G; Bernsteiner H; Ren F; Yuan P; Stary-Weinzinger A; Nichols CG
    J Gen Physiol; 2020 Jan; 152(1):. PubMed ID: 31744859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Physiol; 2004 Nov; 561(Pt 1):159-68. PubMed ID: 15459242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeant ion-dependent changes in gating of Kir2.1 inward rectifier potassium channels.
    Lu T; Wu L; Xiao J; Yang J
    J Gen Physiol; 2001 Nov; 118(5):509-22. PubMed ID: 11696609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating of the kir2.1 channel at the bundle crossing region by intracellular spermine and other cations.
    Huang CW; Kuo CC
    J Cell Physiol; 2014 Nov; 229(11):1703-21. PubMed ID: 24633623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K(+)-dependent gating of K(ir)1.1 channels is linked to pH gating through a conformational change in the pore.
    Schulte U; Weidemann S; Ludwig J; Ruppersberg J; Fakler B
    J Physiol; 2001 Jul; 534(Pt 1):49-58. PubMed ID: 11432991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels.
    Robertson JL; Palmer LG; Roux B
    Biophys J; 2012 Aug; 103(3):434-443. PubMed ID: 22947859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of Slo2 K
    Giese MH; Gardner A; Hansen A; Sanguinetti MC
    J Physiol; 2017 Apr; 595(7):2321-2336. PubMed ID: 27682982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel.
    Meng XY; Liu S; Cui M; Zhou R; Logothetis DE
    Sci Rep; 2016 Jul; 6():29399. PubMed ID: 27439597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and functional characterization of inwardly rectifying K
    Huang X; Lee SH; Lu H; Sanders KM; Koh SD
    J Physiol; 2018 Feb; 596(3):379-391. PubMed ID: 29205356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues.
    D'Avanzo N; Cho HC; Tolokh I; Pekhletski R; Tolokh I; Gray C; Goldman S; Backx PH
    J Gen Physiol; 2005 May; 125(5):493-503. PubMed ID: 15824191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP
    Ha J; Xu Y; Kawano T; Hendon T; Baki L; Garai S; Papapetropoulos A; Thakur GA; Plant LD; Logothetis DE
    J Biol Chem; 2018 Mar; 293(10):3546-3561. PubMed ID: 29317494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Structural Basis of the Intracellular pH Sensing Mechanism of TASK-2 K
    Bustos D; Bedoya M; Ramírez D; Concha G; Zúñiga L; Decher N; Hernández-Rodríguez EW; Sepúlveda FV; Martínez L; González W
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of negatively charged residues at the external mouth of Kir2.2 channels enable the voltage-dependent block by external Mg2+.
    Li J; Xie X; Liu J; Yu H; Zhang S; Zhan Y; Zhang H; Logothetis DE; An H
    PLoS One; 2014; 9(10):e111372. PubMed ID: 25350118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propafenone blocks human cardiac Kir2.x channels by decreasing the negative electrostatic charge in the cytoplasmic pore.
    Amorós I; Dolz-Gaitón P; Gómez R; Matamoros M; Barana A; de la Fuente MG; Núñez M; Pérez-Hernández M; Moraleda I; Gálvez E; Iriepa I; Tamargo J; Caballero R; Delpón E
    Biochem Pharmacol; 2013 Jul; 86(2):267-78. PubMed ID: 23648307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.