These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 37507913)

  • 1. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond.
    Martinez-Banaclocha MA
    Antioxidants (Basel); 2023 Jun; 12(7):. PubMed ID: 37507913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine Network (CYSTEINET) Dysregulation in Parkinson's Disease: Role of N-acetylcysteine.
    Martínez-Banaclocha M
    Curr Drug Metab; 2016; 17(4):368-85. PubMed ID: 26651975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteines as Redox Molecular Switches and Targets of Disease.
    Fra A; Yoboue ED; Sitia R
    Front Mol Neurosci; 2017; 10():167. PubMed ID: 28634440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems.
    Go YM; Roede JR; Walker DI; Duong DM; Seyfried NT; Orr M; Liang Y; Pennell KD; Jones DP
    Mol Cell Proteomics; 2013 Nov; 12(11):3285-96. PubMed ID: 23946468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione metabolism and its implications for health.
    Wu G; Fang YZ; Yang S; Lupton JR; Turner ND
    J Nutr; 2004 Mar; 134(3):489-92. PubMed ID: 14988435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses.
    Jones DP; Mody VC; Carlson JL; Lynn MJ; Sternberg P
    Free Radic Biol Med; 2002 Nov; 33(9):1290-300. PubMed ID: 12398937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.
    Garcia-Garcia A; Zavala-Flores L; Rodriguez-Rocha H; Franco R
    Antioxid Redox Signal; 2012 Dec; 17(12):1764-84. PubMed ID: 22369136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-acetyl-cysteine in Schizophrenia: Potential Role on the Sensitive Cysteine Proteome.
    Martínez-Banaclocha M
    Curr Med Chem; 2020; 27(37):6424-6439. PubMed ID: 33115390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein thiol modifications visualized in vivo.
    Leichert LI; Jakob U
    PLoS Biol; 2004 Nov; 2(11):e333. PubMed ID: 15502869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione, stress responses, and redox signaling in lung inflammation.
    Rahman I; Biswas SK; Jimenez LA; Torres M; Forman HJ
    Antioxid Redox Signal; 2005; 7(1-2):42-59. PubMed ID: 15650395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TrmB Family Transcription Factor as a Thiol-Based Regulator of Oxidative Stress Response.
    Mondragon P; Hwang S; Kasirajan L; Oyetoro R; Nasthas A; Winters E; Couto-Rodriguez RL; Schmid A; Maupin-Furlow JA
    mBio; 2022 Aug; 13(4):e0063322. PubMed ID: 35856564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.
    Sabens Liedhegner EA; Gao XH; Mieyal JJ
    Antioxid Redox Signal; 2012 Mar; 16(6):543-66. PubMed ID: 22066468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From structure to redox: The diverse functional roles of disulfides and implications in disease.
    Bechtel TJ; Weerapana E
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 28044432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.