These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37508463)
1. Range Dynamics of Striped Field Mouse ( Petrosyan V; Dinets V; Osipov F; Dergunova N; Khlyap L Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508463 [TBL] [Abstract][Full Text] [Related]
2. Aggregated occurrence records of the invasive alien striped field mouse ( Khlyap LA; Dinets V; Warshavsky AA; Osipov FA; Dergunova NN; Petrosyan VG Biodivers Data J; 2021; 9():e69159. PubMed ID: 34239342 [TBL] [Abstract][Full Text] [Related]
3. [Applying Biomod2 for modeling of species suitable habitats:a case study of Paeonia lactiflora in China]. Bi YQ; Zhang MX; Chen Y; Wang AX; Li MH Zhongguo Zhong Yao Za Zhi; 2022 Jan; 47(2):376-384. PubMed ID: 35178979 [TBL] [Abstract][Full Text] [Related]
4. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios. Bania JK; Deka JR; Hazarika A; Das AK; Nath AJ; Sileshi GW Sci Rep; 2023 Nov; 13(1):20221. PubMed ID: 37980365 [TBL] [Abstract][Full Text] [Related]
5. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling. Li Y; Shao W; Jiang J Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237 [TBL] [Abstract][Full Text] [Related]
6. Simulation of climate change effect on the global distribution of Yang ST; Wang HC; Jing WK; Wang QG; Yan HJ; Qiu XQ; Jian HY Ying Yong Sheng Tai Xue Bao; 2024 Jul; 35(7):1897-1906. PubMed ID: 39233419 [TBL] [Abstract][Full Text] [Related]
7. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India. Kumar D; Rawat S Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848 [TBL] [Abstract][Full Text] [Related]
8. Potential Distribution of Monteiro WP; de Souza EB; Miranda LS; Anjos LJS; Caldeira CF Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299085 [No Abstract] [Full Text] [Related]
9. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios. Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582 [TBL] [Abstract][Full Text] [Related]
10. Predicting Climate Change Effects on the Potential Distribution of Two Invasive Cryptic Species of the Xue Y; Lin C; Wang Y; Liu W; Wan F; Zhang Y; Ji L Insects; 2022 Nov; 13(12):. PubMed ID: 36554991 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the Potential Distribution of the Endangered Species Zhang HT; Wang WT Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987063 [TBL] [Abstract][Full Text] [Related]
12. Study on the change of global ecological distribution of Jia L; Sun M; He M; Yang M; Zhang M; Yu H Front Plant Sci; 2024; 15():1371998. PubMed ID: 39091317 [No Abstract] [Full Text] [Related]
13. Climate Change Increases the Expansion Risk of Zhao H; Xian X; Zhao Z; Zhang G; Liu W; Wan F Insects; 2022 Jan; 13(1):. PubMed ID: 35055922 [No Abstract] [Full Text] [Related]
14. Global Distribution Prediction of Peng Y; Yang J; Xu D; Zhuo Z Insects; 2024 Sep; 15(9):. PubMed ID: 39336676 [No Abstract] [Full Text] [Related]
15. Global climate change-driven impacts on the Asian distribution of Ran W; Chen J; Zhao Y; Zhang N; Luo G; Zhao Z; Song Y Ecol Evol; 2024 Jul; 14(7):e70003. PubMed ID: 39026963 [TBL] [Abstract][Full Text] [Related]
16. Simulating the changes of the habitats suitability of chub mackerel (Scomber japonicus) in the high seas of the North Pacific Ocean using ensemble models under medium to long-term future climate scenarios. Sun Y; Zhang H; Jiang K; Xiang D; Shi Y; Huang S; Li Y; Han H Mar Pollut Bull; 2024 Oct; 207():116873. PubMed ID: 39180964 [TBL] [Abstract][Full Text] [Related]
17. Phylogeography of the striped field mouse (Apodemus agrarius Pallas, 1771) in light of new data from central part of Northern Eurasia. Yalkovskaya L; Sibiryakov P; Borodin A PLoS One; 2022; 17(10):e0276466. PubMed ID: 36264913 [TBL] [Abstract][Full Text] [Related]
18. Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Peng S; Wang C; Li Z; Mihara K; Kuramochi K; Toma Y; Hatano R Sci Rep; 2023 Jan; 13(1):230. PubMed ID: 36604582 [TBL] [Abstract][Full Text] [Related]
19. Predicting the Distribution of Gao H; Qian Q; Liu L; Xu D Insects; 2023 May; 14(5):. PubMed ID: 37233103 [No Abstract] [Full Text] [Related]
20. Future precipitation and near surface air-temperature projection using CMIP6 models based on TOPSIS method: case study, Sistan-and-Baluchestan Province of Iran. Pegahfar N Environ Monit Assess; 2023 Nov; 195(12):1548. PubMed ID: 38019299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]