BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 37508505)

  • 1. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury.
    Perez-Gianmarco L; Kukley M
    Cells; 2023 Jul; 12(14):. PubMed ID: 37508505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury.
    Chen CH; Sung CS; Huang SY; Feng CW; Hung HC; Yang SN; Chen NF; Tai MH; Wen ZH; Chen WF
    Exp Neurol; 2016 Apr; 278():27-41. PubMed ID: 26828688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glial scar in spinal cord injury and repair.
    Yuan YM; He C
    Neurosci Bull; 2013 Aug; 29(4):421-35. PubMed ID: 23861090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury.
    Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H
    J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial scar survives until the chronic phase by recruiting scar-forming astrocytes after spinal cord injury.
    Tamaru T; Kobayakawa K; Saiwai H; Konno D; Kijima K; Yoshizaki S; Hata K; Iura H; Ono G; Haruta Y; Kitade K; Iida KI; Kawaguchi KI; Matsumoto Y; Kubota K; Maeda T; Okada S; Nakashima Y
    Exp Neurol; 2023 Jan; 359():114264. PubMed ID: 36336030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration.
    Clifford T; Finkel Z; Rodriguez B; Joseph A; Cai L
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects.
    Karimi-Abdolrezaee S; Billakanti R
    Mol Neurobiol; 2012 Oct; 46(2):251-64. PubMed ID: 22684804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury.
    Xie C; Shen X; Xu X; Liu H; Li F; Lu S; Gao Z; Zhang J; Wu Q; Yang D; Bao X; Zhang F; Wu S; Lv Z; Zhu M; Xu D; Wang P; Cao L; Wang W; Yuan Z; Wang Y; Li Z; Teng H; Huang Z
    J Neurosci; 2020 Mar; 40(13):2644-2662. PubMed ID: 32066583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of telomerase reverse transcriptase in glial scar formation after spinal cord injury in rats.
    Tao X; Ming-Kun Y; Wei-Bin S; Hai-Long G; Rui K; Lai-Yong T
    Neurochem Res; 2013 Sep; 38(9):1914-20. PubMed ID: 23793903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
    Herrmann JE; Shah RR; Chan AF; Zheng B
    Exp Neurol; 2010 Jun; 223(2):582-98. PubMed ID: 20170651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury.
    Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH
    J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats.
    Lee JS; Hsu YH; Chiu YS; Jou IM; Chang MS
    J Neuroinflammation; 2020 May; 17(1):156. PubMed ID: 32408881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.
    Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Tom VJ
    J Neurosci; 2015 Aug; 35(31):11068-80. PubMed ID: 26245968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury.
    Hong JY; Lee J; Kim H; Yeo C; Jeon WJ; Lee YJ; Ha IH
    Biomed Pharmacother; 2023 Dec; 168():115710. PubMed ID: 37862963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.
    Wang Y; Gao Z; Zhang Y; Feng SQ; Liu Y; Shields LBE; Zhao YZ; Zhu Q; Gozal D; Shields CB; Cai J
    Mol Neurobiol; 2016 Jul; 53(5):3448-3461. PubMed ID: 26084439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferon-β delivery via human neural stem cell abates glial scar formation in spinal cord injury.
    Nishimura Y; Natsume A; Ito M; Hara M; Motomura K; Fukuyama R; Sumiyoshi N; Aoki I; Saga T; Lee HJ; Wakabayashi T; Kim SU
    Cell Transplant; 2013; 22(12):2187-201. PubMed ID: 23068051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.
    Gwak YS; Kang J; Unabia GC; Hulsebosch CE
    Exp Neurol; 2012 Apr; 234(2):362-72. PubMed ID: 22036747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.