These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 37509354)

  • 41. Design considerations for nanotherapeutics in oncology.
    Stylianopoulos T; Jain RK
    Nanomedicine; 2015 Nov; 11(8):1893-907. PubMed ID: 26282377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gold-silica quantum rattles for multimodal imaging and therapy.
    Hembury M; Chiappini C; Bertazzo S; Kalber TL; Drisko GL; Ogunlade O; Walker-Samuel S; Krishna KS; Jumeaux C; Beard P; Kumar CS; Porter AE; Lythgoe MF; Boissière C; Sanchez C; Stevens MM
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):1959-64. PubMed ID: 25653336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects.
    Chateau D; Liotta A; Vadcard F; Navarro JR; Chaput F; Lermé J; Lerouge F; Parola S
    Nanoscale; 2015 Feb; 7(5):1934-43. PubMed ID: 25530122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmon-enhanced fluorescence of PbS quantum dots for remote near-infrared imaging.
    Wu K; Zhang J; Fan S; Li J; Zhang C; Qiao K; Qian L; Han J; Tang J; Wang S
    Chem Commun (Camb); 2015 Jan; 51(1):141-4. PubMed ID: 25385256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy.
    Zhao J; Babiuch K; Lu H; Dag A; Gottschaldt M; Stenzel MH
    Chem Commun (Camb); 2014 Dec; 50(100):15928-31. PubMed ID: 25382088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesoporous magnetic gold "nanoclusters" as theranostic carrier for chemo-photothermal co-therapy of breast cancer.
    Peng J; Qi T; Liao J; Chu B; Yang Q; Qu Y; Li W; Li H; Luo F; Qian Z
    Theranostics; 2014; 4(7):678-92. PubMed ID: 24883118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods.
    Zhang Z; Wang J; Nie X; Wen T; Ji Y; Wu X; Zhao Y; Chen C
    J Am Chem Soc; 2014 May; 136(20):7317-26. PubMed ID: 24773323
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescence enhancement of molecules inside a gold nanomatryoshka.
    Ayala-Orozco C; Liu JG; Knight MW; Wang Y; Day JK; Nordlander P; Halas NJ
    Nano Lett; 2014 May; 14(5):2926-33. PubMed ID: 24738706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light.
    Okuno T; Kato S; Hatakeyama Y; Okajima J; Maruyama S; Sakamoto M; Mori S; Kodama T
    J Control Release; 2013 Dec; 172(3):879-84. PubMed ID: 24144919
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects.
    Sugawa K; Tamura T; Tahara H; Yamaguchi D; Akiyama T; Otsuki J; Kusaka Y; Fukuda N; Ushijima H
    ACS Nano; 2013 Nov; 7(11):9997-10010. PubMed ID: 24090528
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis.
    Centeno A; Xie F; Alford N
    IET Nanobiotechnol; 2013 Jun; 7(2):50-8. PubMed ID: 24046905
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer.
    Bear AS; Kennedy LC; Young JK; Perna SK; Mattos Almeida JP; Lin AY; Eckels PC; Drezek RA; Foster AE
    PLoS One; 2013; 8(7):e69073. PubMed ID: 23935927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences.
    Deng W; Goldys EM
    Langmuir; 2012 Jul; 28(27):10152-63. PubMed ID: 22568517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multicolour single molecule imaging in cells with near infra-red dyes.
    Tynan CJ; Clarke DT; Coles BC; Rolfe DJ; Martin-Fernandez ML; Webb SE
    PLoS One; 2012; 7(4):e36265. PubMed ID: 22558412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery.
    Tang F; Li L; Chen D
    Adv Mater; 2012 Mar; 24(12):1504-34. PubMed ID: 22378538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods.
    Lombardi A; Loumaigne M; Crut A; Maioli P; Del Fatti N; Vallée F; Spuch-Calvar M; Burgin J; Majimel J; Tréguer-Delapierre M
    Langmuir; 2012 Jun; 28(24):9027-33. PubMed ID: 22369067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment.
    Zhang Z; Wang L; Wang J; Jiang X; Li X; Hu Z; Ji Y; Wu X; Chen C
    Adv Mater; 2012 Mar; 24(11):1418-23. PubMed ID: 22318874
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gold nanostars as thermoplasmonic nanoparticles for optical heating.
    Rodríguez-Oliveros R; Sánchez-Gil JA
    Opt Express; 2012 Jan; 20(1):621-6. PubMed ID: 22274385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A review of NIR dyes in cancer targeting and imaging.
    Luo S; Zhang E; Su Y; Cheng T; Shi C
    Biomaterials; 2011 Oct; 32(29):7127-38. PubMed ID: 21724249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.