These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37510133)
1. Supervised Contrastive Learning with Angular Margin for the Detection and Grading of Diabetic Retinopathy. Zhu D; Ge A; Chen X; Wang Q; Wu J; Liu S Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510133 [TBL] [Abstract][Full Text] [Related]
2. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
3. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
4. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
5. Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Galdran A; Chelbi J; Kobi R; Dolz J; Lombaert H; Ben Ayed I; Chakor H Transl Vis Sci Technol; 2020 Jun; 9(2):34. PubMed ID: 32832207 [TBL] [Abstract][Full Text] [Related]
6. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Cao P; Ren F; Wan C; Yang J; Zaiane O Comput Med Imaging Graph; 2018 Nov; 69():112-124. PubMed ID: 30237145 [TBL] [Abstract][Full Text] [Related]
7. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
8. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software. Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471 [No Abstract] [Full Text] [Related]
11. MB-SupCon: Microbiome-based Predictive Models via Supervised Contrastive Learning. Yang S; Wang S; Wang Y; Rong R; Kim J; Li B; Koh AY; Xiao G; Li Q; Liu DJ; Zhan X J Mol Biol; 2022 Aug; 434(15):167693. PubMed ID: 35777465 [TBL] [Abstract][Full Text] [Related]
12. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers. Gayathri S; Gopi VP; Palanisamy P Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015 [TBL] [Abstract][Full Text] [Related]
13. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845 [TBL] [Abstract][Full Text] [Related]
15. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods. Liu H; Teng L; Fan L; Sun Y; Li H Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202 [TBL] [Abstract][Full Text] [Related]
16. Image Quality Assessment Guided Collaborative Learning of Image Enhancement and Classification for Diabetic Retinopathy Grading. Hou Q; Cao P; Jia L; Chen L; Yang J; Zaiane OR IEEE J Biomed Health Inform; 2022 Dec; PP():. PubMed ID: 37015399 [TBL] [Abstract][Full Text] [Related]
17. The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy. Qian X; Jingying H; Xian S; Yuqing Z; Lili W; Baorui C; Wei G; Yefeng Z; Qiang Z; Chunyan C; Cheng B; Kai M; Yi Q Front Public Health; 2022; 10():1025271. PubMed ID: 36419999 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based detection and stage grading for optimising diagnosis of diabetic retinopathy. Wang Y; Yu M; Hu B; Jin X; Li Y; Zhang X; Zhang Y; Gong D; Wu C; Zhang B; Yang J; Li B; Yuan M; Mo B; Wei Q; Zhao J; Ding D; Yang J; Li X; Yu W; Chen Y Diabetes Metab Res Rev; 2021 May; 37(4):e3445. PubMed ID: 33713564 [TBL] [Abstract][Full Text] [Related]
19. Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach. Wang Y; Shi D; Tan Z; Niu Y; Jiang Y; Xiong R; Peng G; He M Front Med (Lausanne); 2021; 8():740987. PubMed ID: 34901058 [No Abstract] [Full Text] [Related]
20. Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images. Wang X; Xu M; Zhang J; Jiang L; Li L; He M; Wang N; Liu H; Wang Z IEEE J Biomed Health Inform; 2022 May; 26(5):2216-2227. PubMed ID: 34648460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]