These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37510133)
21. Improving the Classification Performance of Esophageal Disease on Small Dataset by Semi-supervised Efficient Contrastive Learning. Du W; Rao N; Yong J; Wang Y; Hu D; Gan T; Zhu L; Zeng B J Med Syst; 2021 Nov; 46(1):4. PubMed ID: 34807297 [TBL] [Abstract][Full Text] [Related]
22. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
23. Self-FI: Self-Supervised Learning for Disease Diagnosis in Fundus Images. Nguyen TD; Le DT; Bum J; Kim S; Song SJ; Choo H Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760191 [TBL] [Abstract][Full Text] [Related]
24. Multimodal image encoding pre-training for diabetic retinopathy grading. Hervella ÁS; Rouco J; Novo J; Ortega M Comput Biol Med; 2022 Apr; 143():105302. PubMed ID: 35219187 [TBL] [Abstract][Full Text] [Related]
25. Deep contrastive learning based tissue clustering for annotation-free histopathology image analysis. Yan J; Chen H; Li X; Yao J Comput Med Imaging Graph; 2022 Apr; 97():102053. PubMed ID: 35306442 [TBL] [Abstract][Full Text] [Related]
26. The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading. Lin L; Li M; Huang Y; Cheng P; Xia H; Wang K; Yuan J; Tang X Sci Data; 2020 Nov; 7(1):409. PubMed ID: 33219237 [TBL] [Abstract][Full Text] [Related]
27. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704 [TBL] [Abstract][Full Text] [Related]
28. Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images. Cao P; Hou Q; Song R; Wang H; Zaiane O Comput Biol Med; 2022 May; 144():105341. PubMed ID: 35279423 [TBL] [Abstract][Full Text] [Related]
29. Two Eyes Are Better Than One: Exploiting Binocular Correlation for Diabetic Retinopathy Severity Grading. Qian P; Zhao Z; Chen C; Zeng Z; Li X Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2115-2118. PubMed ID: 34891706 [TBL] [Abstract][Full Text] [Related]
30. Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN. Alwakid G; Gouda W; Humayun M Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510123 [TBL] [Abstract][Full Text] [Related]
31. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Papadopoulos A; Topouzis F; Delopoulos A Sci Rep; 2021 Jul; 11(1):14326. PubMed ID: 34253799 [TBL] [Abstract][Full Text] [Related]
32. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. Li F; Tang S; Chen Y; Zou H Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744 [TBL] [Abstract][Full Text] [Related]
33. Handheld fundus camera performance, image quality and outcomes of diabetic retinopathy grading in a pilot screening study. Kubin AM; Wirkkala J; Keskitalo A; Ohtonen P; Hautala N Acta Ophthalmol; 2021 Dec; 99(8):e1415-e1420. PubMed ID: 33724706 [TBL] [Abstract][Full Text] [Related]
34. MobileNet-V2 /IFHO model for Accurate Detection of early-stage diabetic retinopathy. Huang C; Sarabi M; Ragab AE Heliyon; 2024 Sep; 10(17):e37293. PubMed ID: 39296185 [TBL] [Abstract][Full Text] [Related]
35. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Sayres R; Taly A; Rahimy E; Blumer K; Coz D; Hammel N; Krause J; Narayanaswamy A; Rastegar Z; Wu D; Xu S; Barb S; Joseph A; Shumski M; Smith J; Sood AB; Corrado GS; Peng L; Webster DR Ophthalmology; 2019 Apr; 126(4):552-564. PubMed ID: 30553900 [TBL] [Abstract][Full Text] [Related]
36. Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening. Hsieh YT; Chuang LM; Jiang YD; Chang TJ; Yang CM; Yang CH; Chan LW; Kao TY; Chen TC; Lin HC; Tsai CH; Chen M J Formos Med Assoc; 2021 Jan; 120(1 Pt 1):165-171. PubMed ID: 32307321 [TBL] [Abstract][Full Text] [Related]
37. Universum-Inspired Supervised Contrastive Learning. Han A; Geng C; Chen S IEEE Trans Image Process; 2023; 32():4275-4286. PubMed ID: 37405884 [TBL] [Abstract][Full Text] [Related]
38. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
39. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Abbas Q; Fondon I; Sarmiento A; Jiménez S; Alemany P Med Biol Eng Comput; 2017 Nov; 55(11):1959-1974. PubMed ID: 28353133 [TBL] [Abstract][Full Text] [Related]
40. Robust Collaborative Learning of Patch-Level and Image-Level Annotations for Diabetic Retinopathy Grading From Fundus Image. Yang Y; Shang F; Wu B; Yang D; Wang L; Xu Y; Zhang W; Zhang T IEEE Trans Cybern; 2022 Nov; 52(11):11407-11417. PubMed ID: 33961571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]