These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37510182)
1. Deep Learning Convolutional Neural Network Reconstruction and Radial k-Space Acquisition MR Technique for Enhanced Detection of Retropatellar Cartilage Lesions of the Knee Joint. Kaniewska M; Deininger-Czermak E; Lohezic M; Ensle F; Guggenberger R Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510182 [TBL] [Abstract][Full Text] [Related]
2. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time. Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning-Enhanced Accelerated 2D TSE and 3D Superresolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment. Smekens C; Beirinckx Q; Bosmans F; Vanhevel F; Snoeckx A; Sijbers J; Jeurissen B; Janssens T; Van Dyck P Invest Radiol; 2024 Aug; ():. PubMed ID: 39190787 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. Feuerriegel GC; Weiss K; Kronthaler S; Leonhardt Y; Neumann J; Wurm M; Lenhart NS; Makowski MR; Schwaiger BJ; Woertler K; Karampinos DC; Gersing AS Eur Radiol; 2023 Jul; 33(7):4875-4884. PubMed ID: 36806569 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol. Herrmann J; Keller G; Gassenmaier S; Nickel D; Koerzdoerfer G; Mostapha M; Almansour H; Afat S; Othman AE Eur Radiol; 2022 Sep; 32(9):6215-6229. PubMed ID: 35389046 [TBL] [Abstract][Full Text] [Related]
6. Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience. Subhas N; Li H; Yang M; Winalski CS; Polster J; Obuchowski N; Mamoto K; Liu R; Zhang C; Huang P; Gaire SK; Liang D; Shen B; Li X; Ying L Quant Imaging Med Surg; 2020 Sep; 10(9):1748-1762. PubMed ID: 32879854 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional CAIPIRINHA SPACE TSE for 5-Minute High-Resolution MRI of the Knee. Fritz J; Fritz B; Thawait GG; Meyer H; Gilson WD; Raithel E Invest Radiol; 2016 Oct; 51(10):609-17. PubMed ID: 27187045 [TBL] [Abstract][Full Text] [Related]
8. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity. Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067 [TBL] [Abstract][Full Text] [Related]
9. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Altahawi FF; Blount KJ; Morley NP; Raithel E; Omar IM Skeletal Radiol; 2017 Jan; 46(1):7-15. PubMed ID: 27744578 [TBL] [Abstract][Full Text] [Related]
10. A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible? Fayad LM; Parekh VS; de Castro Luna R; Ko CC; Tank D; Fritz J; Ahlawat S; Jacobs MA Invest Radiol; 2021 Jun; 56(6):357-368. PubMed ID: 33350717 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic Image Quality of a Low-Field (0.55T) Knee MRI Protocol Using Deep Learning Image Reconstruction Compared with a Standard (1.5T) Knee MRI Protocol. Lopez Schmidt I; Haag N; Shahzadi I; Frohwein LJ; Schneider C; Niehoff JH; Kroeger JR; Borggrefe J; Moenninghoff C J Clin Med; 2023 Feb; 12(5):. PubMed ID: 36902704 [TBL] [Abstract][Full Text] [Related]
12. DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI. Kharaji M; Canton G; Guo Y; Mosi MH; Zhou Z; Balu N; Mossa-Basha M AJNR Am J Neuroradiol; 2024 Nov; ():. PubMed ID: 39038956 [TBL] [Abstract][Full Text] [Related]
13. Deep learning reconstruction for optimized bone assessment in zero echo time MR imaging of the knee. Ensle F; Abel F; Lohezic M; Obermüller C; Guggenberger R Eur J Radiol; 2024 Oct; 179():111663. PubMed ID: 39142010 [TBL] [Abstract][Full Text] [Related]
14. Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers. Dratsch T; Zäske C; Siedek F; Rauen P; Hokamp NG; Sonnabend K; Maintz D; Bratke G; Iuga A Eur Radiol Exp; 2024 Apr; 8(1):47. PubMed ID: 38616220 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee. Fritz J; Fritz B; Zhang J; Thawait GK; Joshi DH; Pan L; Wang D Invest Radiol; 2017 Sep; 52(9):529-537. PubMed ID: 28430716 [TBL] [Abstract][Full Text] [Related]
17. Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience. Fritz J; Raithel E; Thawait GK; Gilson W; Papp DF Invest Radiol; 2016 Jun; 51(6):400-9. PubMed ID: 26685106 [TBL] [Abstract][Full Text] [Related]
18. A deep learning-based reconstruction approach for accelerated magnetic resonance image of the knee with compressed sense: evaluation in healthy volunteers. Iuga AI; Rauen PS; Siedek F; Große-Hokamp N; Sonnabend K; Maintz D; Lennartz S; Bratke G Br J Radiol; 2023 Jun; 96(1146):20220074. PubMed ID: 37086077 [TBL] [Abstract][Full Text] [Related]
19. A Feasibility Study on Deep Learning Reconstruction to Improve Image Quality With PROPELLER Acquisition in the Setting of T2-Weighted Gynecologic Pelvic Magnetic Resonance Imaging. Saleh M; Virarkar M; Javadi S; Mathew M; Vulasala SSR; Son JB; Sun J; Bayram E; Wang X; Ma J; Szklaruk J; Bhosale P J Comput Assist Tomogr; 2023 Sep-Oct 01; 47(5):721-728. PubMed ID: 37707401 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study. Wang Q; Zhao W; Xing X; Wang Y; Xin P; Chen Y; Zhu Y; Xu J; Zhao Q; Yuan H; Lang N Eur Radiol; 2023 Dec; 33(12):8585-8596. PubMed ID: 37382615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]