BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37510351)

  • 1. Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts (
    Yan L; Song W; Wang Z; Yu D; Sudini H; Kang Y; Lei Y; Huai D; Chen Y; Wang X; Wang Q; Liao B
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea).
    Luo Z; Cui R; Chavarro C; Tseng YC; Zhou H; Peng Z; Chu Y; Yang X; Lopez Y; Tillman B; Dufault N; Brenneman T; Isleib TG; Holbrook C; Ozias-Akins P; Wang J
    Theor Appl Genet; 2020 Apr; 133(4):1201-1212. PubMed ID: 31974667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.).
    Li L; Cui S; Dang P; Yang X; Wei X; Chen K; Liu L; Chen CY
    BMC Genomics; 2022 May; 23(1):403. PubMed ID: 35624420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.).
    Guo M; Deng L; Gu J; Miao J; Yin J; Li Y; Fang Y; Huang B; Sun Z; Qi F; Dong W; Lu Z; Li S; Hu J; Zhang X; Ren L
    BMC Plant Biol; 2024 Apr; 24(1):244. PubMed ID: 38575936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome.
    Moretzsohn Mde C; Hopkins MS; Mitchell SE; Kresovich S; Valls JF; Ferreira ME
    BMC Plant Biol; 2004 Jul; 4():11. PubMed ID: 15253775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic dissection of fatty acid components in the Chinese peanut (Arachis hypogaea L.) mini-core collection under multi-environments.
    Zhou X; Luo H; Yu B; Huang L; Liu N; Chen W; Liao B; Lei Y; Huai D; Guo P; Li W; Guo J; Jiang H
    PLoS One; 2022; 17(12):e0279650. PubMed ID: 36584016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GWAS Discovery Of Candidate Genes for Yield-Related Traits in Peanut and Support from Earlier QTL Mapping Studies.
    Wang J; Yan C; Li Y; Li C; Zhao X; Yuan C; Sun Q; Shan S
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31614874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut.
    Liu Y; Shao L; Zhou J; Li R; Pandey MK; Han Y; Cui F; Zhang J; Guo F; Chen J; Shan S; Fan G; Zhang H; Seim I; Liu X; Li X; Varshney RK; Li G; Wan S
    J Adv Res; 2022 Dec; 42():237-248. PubMed ID: 36513415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of potential QTLs and genes associated with seed composition traits in peanut (Arachis hypogaea L.) using GWAS and RNA-Seq analysis.
    Zhang H; Li Wang M; Dang P; Jiang T; Zhao S; Lamb M; Chen C
    Gene; 2021 Feb; 769():145215. PubMed ID: 33038422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Diversity, Population Structure, and Botanical Variety of 320 Global Peanut Accessions Revealed Through Tunable Genotyping-by-Sequencing.
    Zheng Z; Sun Z; Fang Y; Qi F; Liu H; Miao L; Du P; Shi L; Gao W; Han S; Dong W; Tang F; Cheng F; Hu H; Huang B; Zhang X
    Sci Rep; 2018 Sep; 8(1):14500. PubMed ID: 30266974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.).
    Otyama PI; Chamberlin K; Ozias-Akins P; Graham MA; Cannon EKS; Cannon SB; MacDonald GE; Anglin NL
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34751378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis.
    Zhang H; Chu Y; Dang P; Tang Y; Jiang T; Clevenger JP; Ozias-Akins P; Holbrook C; Wang ML; Campbell H; Hagan A; Chen C
    Theor Appl Genet; 2020 Jul; 133(7):2051-2061. PubMed ID: 32144466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundant microsatellite diversity and oil content in wild Arachis species.
    Huang L; Jiang H; Ren X; Chen Y; Xiao Y; Zhao X; Tang M; Huang J; Upadhyaya HD; Liao B
    PLoS One; 2012; 7(11):e50002. PubMed ID: 23185514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut.
    Dodia SM; Joshi B; Gangurde SS; Thirumalaisamy PP; Mishra GP; Narandrakumar D; Soni P; Rathnakumar AL; Dobaria JR; Sangh C; Chitikineni A; Chanda SV; Pandey MK; Varshney RK; Thankappan R
    Theor Appl Genet; 2019 Apr; 132(4):1001-1016. PubMed ID: 30539317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Diversity and Genome-Wide Association Study of Seed Aspect Ratio Using a High-Density SNP Array in Peanut (
    Zou K; Kim KS; Kim K; Kang D; Park YH; Sun H; Ha BK; Ha J; Jun TH
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33375051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut.
    Nagy ED; Guo Y; Tang S; Bowers JE; Okashah RA; Taylor CA; Zhang D; Khanal S; Heesacker AF; Khalilian N; Farmer AD; Carrasquilla-Garcia N; Penmetsa RV; Cook D; Stalker HT; Nielsen N; Ozias-Akins P; Knapp SJ
    BMC Genomics; 2012 Sep; 13():469. PubMed ID: 22967170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).
    Peng Z; Gallo M; Tillman BL; Rowland D; Wang J
    Mol Genet Genomics; 2016 Feb; 291(1):363-81. PubMed ID: 26362763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut (
    Luo D; Shi L; Sun Z; Qi F; Liu H; Xue L; Li X; Liu H; Qu P; Zhao H; Dai X; Dong W; Zheng Z; Huang B; Fu L; Zhang X
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut germplasm.
    Zhao Z; Tseng YC; Peng Z; Lopez Y; Chen CY; Tillman BL; Dang P; Wang J
    BMC Genet; 2018 Mar; 19(1):17. PubMed ID: 29571286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes.
    Bosamia TC; Dodia SM; Mishra GP; Ahmad S; Joshi B; Thirumalaisamy PP; Kumar N; Rathnakumar AL; Sangh C; Kumar A; Thankappan R
    PLoS One; 2020; 15(8):e0236823. PubMed ID: 32745143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.