BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37511012)

  • 21. Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs.
    McLaughlin CR; Acosta MC; Luna C; Liu W; Belmonte C; Griffith M; Gallar J
    Biomaterials; 2010 Apr; 31(10):2770-8. PubMed ID: 20042235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications.
    Rafat M; Xeroudaki M; Koulikovska M; Sherrell P; Groth F; Fagerholm P; Lagali N
    Biomaterials; 2016 Mar; 83():142-55. PubMed ID: 26773670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.
    Ozcelik B; Brown KD; Blencowe A; Ladewig K; Stevens GW; Scheerlinck JP; Abberton K; Daniell M; Qiao GG
    Adv Healthc Mater; 2014 Sep; 3(9):1496-507. PubMed ID: 24652807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration.
    Palchesko RN; Carrasquilla SD; Feinberg AW
    Adv Healthc Mater; 2018 Aug; 7(16):e1701434. PubMed ID: 29845780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen.
    Merrett K; Fagerholm P; McLaughlin CR; Dravida S; Lagali N; Shinozaki N; Watsky MA; Munger R; Kato Y; Li F; Marmo CJ; Griffith M
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3887-94. PubMed ID: 18515574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ Tissue Regeneration in the Cornea from Bench to Bedside.
    Poudel BK; Robert MC; Simpson FC; Malhotra K; Jacques L; LaBarre P; Griffith M
    Cells Tissues Organs; 2022; 211(4):506-526. PubMed ID: 34380144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical and Optical Properties of Reinforced Collagen Membranes for Corneal Regeneration through Polyrotaxane Cross-Linking.
    Lei X; Jia YG; Song W; Qi D; Jin J; Liu J; Ren L
    ACS Appl Bio Mater; 2019 Sep; 2(9):3861-3869. PubMed ID: 35021320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo study of the biocompatibility of a novel compressed collagen hydrogel scaffold for artificial corneas.
    Xiao X; Pan S; Liu X; Zhu X; Connon CJ; Wu J; Mi S
    J Biomed Mater Res A; 2014 Jun; 102(6):1782-7. PubMed ID: 23813783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recombinant human collagen for tissue engineered corneal substitutes.
    Liu W; Merrett K; Griffith M; Fagerholm P; Dravida S; Heyne B; Scaiano JC; Watsky MA; Shinozaki N; Lagali N; Munger R; Li F
    Biomaterials; 2008 Mar; 29(9):1147-58. PubMed ID: 18076983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications.
    Goodarzi H; Jadidi K; Pourmotabed S; Sharifi E; Aghamollaei H
    Int J Biol Macromol; 2019 Apr; 126():620-632. PubMed ID: 30562517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering.
    Romo-Valera C; Guerrero P; Arluzea J; Etxebarria J; de la Caba K; Andollo N
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterned collagen films loaded with miR-133b@MBG-NH
    Zhan G; Yu L; Wang Q; Jin L; Yin X; Cao X; Gao H
    Biomed Mater; 2024 Mar; 19(3):. PubMed ID: 38422520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silk film biomaterials for cornea tissue engineering.
    Lawrence BD; Marchant JK; Pindrus MA; Omenetto FG; Kaplan DL
    Biomaterials; 2009 Mar; 30(7):1299-308. PubMed ID: 19059642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilic, Porous, Fiber-Reinforced Collagen-Based Membrane for Corneal Repair.
    Li ZB; Liu J; Xu YN; Sun XM; Peng YH; Zhao Q; Lin YA; Huang YR; Ren L
    Macromol Biosci; 2024 May; 24(5):e2300449. PubMed ID: 38178686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and Evaluation of Bacterial Nanocellulose/Hyaluronic Acid Composite Artificial Cornea for Application of Corneal Transplantation.
    Luo Y; Li G; Chen L; Hong FF
    Biomacromolecules; 2023 Jan; 24(1):201-212. PubMed ID: 36441906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair.
    Chen F; Le P; Fernandes-Cunha GM; Heilshorn SC; Myung D
    Biomaterials; 2020 Oct; 255():120176. PubMed ID: 32559566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Evaluation of biocompatibility of modified gelatin composite membranes for corneal regeneration].
    Long Y; Ren L; Wang J; Chen M; Liu Y; Liu B; Wang Y; Ge J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):170-5. PubMed ID: 23488160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z
    Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo biocompatibility evaluation of in situ-forming polyethylene glycol-collagen hydrogels in corneal defects.
    Chun YH; Park SK; Kim EJ; Lee HJ; Kim H; Koh WG; Cunha GF; Myung D; Na KS
    Sci Rep; 2021 Dec; 11(1):23913. PubMed ID: 34903788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-Orthogonally Crosslinked, In Situ Forming Corneal Stromal Tissue Substitute.
    Lee HJ; Fernandes-Cunha GM; Na KS; Hull SM; Myung D
    Adv Healthc Mater; 2018 Oct; 7(19):e1800560. PubMed ID: 30106514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.