These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37511026)

  • 1. Impact of the Protein Environment on Two-Photon Absorption Cross-Sections of the GFP Chromophore Anion Resolved at the XMCQDPT2 Level of Theory.
    Aslopovsky VR; Scherbinin AV; Kleshchina NN; Bochenkova AV
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Photon Absorption Properties of Gold Fluorescent Protein: A Combined Molecular Dynamics and Quantum Chemistry Study.
    Şimşek Y; Brown A
    J Phys Chem B; 2018 Jun; 122(22):5738-5748. PubMed ID: 29741903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics.
    Alaraby Salem M; Brown A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25563-71. PubMed ID: 26370051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.
    Molina RS; Tran TM; Campbell RE; Lambert GG; Salih A; Shaner NC; Hughes TE; Drobizhev M
    J Phys Chem Lett; 2017 Jun; 8(12):2548-2554. PubMed ID: 28530831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden electronic excited state of enhanced green fluorescent protein.
    Hosoi H; Yamaguchi S; Mizuno H; Miyawaki A; Tahara T
    J Phys Chem B; 2008 Mar; 112(10):2761-3. PubMed ID: 18275187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
    Bravaya KB; Khrenova MG; Grigorenko BL; Nemukhin AV; Krylov AI
    J Phys Chem B; 2011 Jun; 115(25):8296-303. PubMed ID: 21591720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of zwitterions in kindling fluorescent protein photochemistry.
    Mironov VA; Bravaya KB; Nemukhin AV
    J Phys Chem B; 2015 Feb; 119(6):2467-74. PubMed ID: 25365115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The whither of bacteriophytochrome-based near-infrared fluorescent proteins: Insights from two-photon absorption spectroscopy.
    Lanin AA; Chebotarev AS; Barykina NV; Subach FV; Zheltikov AM
    J Biophotonics; 2019 May; 12(5):e201800353. PubMed ID: 30414251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of two-photon absorption enhancement in red fluorescent protein chromophores made from non-canonical amino acids.
    Salem MA; Twelves I; Brown A
    Phys Chem Chem Phys; 2016 Sep; 18(35):24408-16. PubMed ID: 27534378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria.
    Nifosì R; Tozzini V
    Proteins; 2003 May; 51(3):378-89. PubMed ID: 12696049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
    Stoner-Ma D; Jaye AA; Ronayne KL; Nappa J; Meech SR; Tonge PJ
    J Am Chem Soc; 2008 Jan; 130(4):1227-35. PubMed ID: 18179211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy.
    Bell AF; He X; Wachter RM; Tonge PJ
    Biochemistry; 2000 Apr; 39(15):4423-31. PubMed ID: 10757992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.
    Wan S; Liu S; Zhao G; Chen M; Han K; Sun M
    Biophys Chem; 2007 Sep; 129(2-3):218-23. PubMed ID: 17604900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores.
    Grabarek D; Andruniów T
    J Chem Theory Comput; 2019 Jan; 15(1):490-508. PubMed ID: 30485096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Light-Induced Proton Transfer from the GFP Chromophore.
    Langeland J; Persen NW; Gruber E; Kiefer HV; Kabylda AM; Bochenkova AV; Andersen LH
    Chemphyschem; 2021 May; 22(9):833-841. PubMed ID: 33591586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removing artifacts in polarizable embedding calculations of one- and two-photon absorption spectra of fluorescent proteins.
    Grabarek D; Andruniów T
    J Chem Phys; 2020 Dec; 153(21):215102. PubMed ID: 33291919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form.
    Boyko KM; Khrenova MG; Nikolaeva AY; Dorovatovskii PV; Vlaskina AV; Subach OM; Popov VO; Subach FV
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long- and Short-Range Electrostatic Fields in GFP Mutants: Implications for Spectral Tuning.
    Drobizhev M; Callis PR; Nifosì R; Wicks G; Stoltzfus C; Barnett L; Hughes TE; Sullivan P; Rebane A
    Sci Rep; 2015 Aug; 5():13223. PubMed ID: 26286372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of fluorescence fluctuation dynamics of green fluorescent proteins in acidic environments.
    Liu Y; Kim HR; Heikal AA
    J Phys Chem B; 2006 Nov; 110(47):24138-46. PubMed ID: 17125385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.