These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37511026)
21. Two-Photon Absorption in Fluorescent Protein Chromophores: TDDFT and CC2 Results. Salem MA; Brown A J Chem Theory Comput; 2014 Aug; 10(8):3260-9. PubMed ID: 26588295 [TBL] [Abstract][Full Text] [Related]
22. Protonation States of Molecular Groups in the Chromophore-Binding Site Modulate Properties of the Reversibly Switchable Fluorescent Protein rsEGFP2. Grigorenko BL; Domratcheva T; Polyakov IV; Nemukhin AV J Phys Chem Lett; 2021 Sep; 12(34):8263-8271. PubMed ID: 34424693 [TBL] [Abstract][Full Text] [Related]
23. Theoretical study of the proton transfer wires influence on the one- and two-photon absorption properties of green fluorescent protein chromophore. Zhang MY; Xu C; Lin CS; Guan X; Cheng WD Org Biomol Chem; 2013 Feb; 11(8):1414-22. PubMed ID: 23338242 [TBL] [Abstract][Full Text] [Related]
24. Determination of Two-Photon-Absorption Cross Sections Using Time-Dependent Density Functional Theory Tight Binding: Application to Fluorescent Protein Chromophores. Rossano-Tapia M; Brown A J Chem Theory Comput; 2019 May; 15(5):3153-3161. PubMed ID: 30896947 [TBL] [Abstract][Full Text] [Related]
25. Conical intersection dynamics in solution: the chromophore of Green Fluorescent Protein. Toniolo A; Olsen S; Manohar L; Martínez TJ Faraday Discuss; 2004; 127():149-63. PubMed ID: 15471344 [TBL] [Abstract][Full Text] [Related]
26. A Hückel Model for the Excited-State Dynamics of a Protein Chromophore Developed Using Photoelectron Imaging. Anstöter CS; Verlet JRR Acc Chem Res; 2022 May; 55(9):1205-1213. PubMed ID: 35172580 [TBL] [Abstract][Full Text] [Related]
27. Exploring the Effects of Mutagenesis on FusionRed by Using Excited-State QM/MM Dynamics and Classical Force Field Simulations. Murphy AR; Hix MA; Walker AR Chembiochem; 2023 Jun; 24(12):e202200799. PubMed ID: 36787215 [TBL] [Abstract][Full Text] [Related]
28. Ultrafast excited state dynamics of the green fluorescent protein chromophore and its kindling fluorescent protein analogue. Addison K; Heisler IA; Conyard J; Dixon T; Page PC; Meech SR Faraday Discuss; 2013; 163():277-96; discussion 393-432. PubMed ID: 24020207 [TBL] [Abstract][Full Text] [Related]
29. What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins? Grabarek D; Andruniów T J Chem Theory Comput; 2020 Oct; 16(10):6439-6455. PubMed ID: 32862643 [TBL] [Abstract][Full Text] [Related]
30. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Verkhusha VV; Chudakov DM; Gurskaya NG; Lukyanov S; Lukyanov KA Chem Biol; 2004 Jun; 11(6):845-54. PubMed ID: 15217617 [TBL] [Abstract][Full Text] [Related]
31. Absorption spectrum of the green fluorescent protein chromophore anion in vacuo. Nielsen SB; Lapierre A; Andersen JU; Pedersen UV; Tomita S; Andersen LH Phys Rev Lett; 2001 Nov; 87(22):228102. PubMed ID: 11736429 [TBL] [Abstract][Full Text] [Related]
32. Excited state dynamics of the isolated green fluorescent protein chromophore anion following UV excitation. West CW; Bull JN; Hudson AS; Cobb SL; Verlet JR J Phys Chem B; 2015 Mar; 119(10):3982-7. PubMed ID: 25686152 [TBL] [Abstract][Full Text] [Related]
33. Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. Drobizhev M; Tillo S; Makarov NS; Hughes TE; Rebane A J Phys Chem B; 2009 Jan; 113(4):855-9. PubMed ID: 19127988 [TBL] [Abstract][Full Text] [Related]
34. The lineshape of the electronic spectrum of the green fluorescent protein chromophore, part I: gas phase. Davari MD; Ferrer FJ; Morozov D; Santoro F; Groenhof G Chemphyschem; 2014 Oct; 15(15):3236-45. PubMed ID: 25178474 [TBL] [Abstract][Full Text] [Related]
35. Modeling photophysical properties of the bacteriophytochrome-based fluorescent protein IFP1.4. Grigorenko BL; Polyakov IV; Nemukhin AV J Chem Phys; 2021 Feb; 154(6):065101. PubMed ID: 33588533 [TBL] [Abstract][Full Text] [Related]
36. Describing two-photon absorptivity of fluorescent proteins with a new vibronic coupling mechanism. Drobizhev M; Makarov NS; Tillo SE; Hughes TE; Rebane A J Phys Chem B; 2012 Feb; 116(5):1736-44. PubMed ID: 22224830 [TBL] [Abstract][Full Text] [Related]
37. A combined quantum mechanics/molecular mechanics study of the one- and two-photon absorption in the green fluorescent protein. Steindal AH; Olsen JM; Ruud K; Frediani L; Kongsted J Phys Chem Chem Phys; 2012 Apr; 14(16):5440-51. PubMed ID: 22407300 [TBL] [Abstract][Full Text] [Related]
38. A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging. Yuan L; Lin W; Chen H; Zhu S; He L Angew Chem Int Ed Engl; 2013 Sep; 52(38):10018-22. PubMed ID: 23929806 [TBL] [Abstract][Full Text] [Related]
39. Switching of Two-Photon Optical Properties by Anion Binding of Pyrrole-Based Boron Diketonates through Conformation Change. Kita H; Yamakado R; Fukuuchi R; Konishi T; Kamada K; Haketa Y; Maeda H Chemistry; 2020 Mar; 26(15):3404-3410. PubMed ID: 31853985 [TBL] [Abstract][Full Text] [Related]
40. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution. Pirojsirikul T; Götz AW; Weare J; Walker RC; Kowalski K; Valiev M J Comput Chem; 2017 Jul; 38(18):1631-1639. PubMed ID: 28470855 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]