These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37511209)

  • 1. Carbon Dioxide Capture by Adsorption in a Model Hydroxy-Modified Graphene Pore.
    Freyre P; St Pierre E; Rybolt T
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric field assisted activation of CO
    Esrafili MD
    J Mol Graph Model; 2019 Jul; 90():192-198. PubMed ID: 31102943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption-induced clustering of CO
    Meconi GM; Zangi R
    Phys Chem Chem Phys; 2020 Sep; 22(37):21031-21041. PubMed ID: 32926038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.
    García S; Pis JJ; Rubiera F; Pevida C
    Langmuir; 2013 May; 29(20):6042-52. PubMed ID: 23617579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Carbon Dioxide and Nitrogen in Co
    Ribeiro RPPL; Mota JPB
    Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer Graphtriyne Membranes for Separation and Storage of CO
    Apriliyanto YB; Faginas-Lago N; Evangelisti S; Bartolomei M; Leininger T; Pirani F; Pacifici L; Lombardi A
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.
    Saleh M; Chandra V; Kemp KC; Kim KS
    Nanotechnology; 2013 Jun; 24(25):255702. PubMed ID: 23708437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process.
    Rouzitalab Z; Maklavany DM; Jafarinejad S; Rashidi A
    Chemosphere; 2020 May; 246():125756. PubMed ID: 31918088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.
    Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z
    ChemSusChem; 2014 Feb; 7(2):435-41. PubMed ID: 24488677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed synthesis of nanoporous carbons from task-specific ionic liquid precursors for the adsorption of CO2.
    Mahurin SM; Fulvio PF; Hillesheim PC; Nelson KM; Veith GM; Dai S
    ChemSusChem; 2014 Dec; 7(12):3284-9. PubMed ID: 25082361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M; Elfaki J; Usman A; Hussain Q; Ok YS
    Environ Res; 2019 Jul; 174():69-79. PubMed ID: 31054524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas.
    Hu Y; Verdegaal WM; Yu SH; Jiang HL
    ChemSusChem; 2014 Mar; 7(3):734-7. PubMed ID: 24464970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Yue L; Xia Q; Wang L; Wang L; DaCosta H; Yang J; Hu X
    J Colloid Interface Sci; 2018 Feb; 511():259-267. PubMed ID: 29028577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step conversion of agro-wastes to nanoporous carbons: Role in separation of greenhouse gases.
    Saha D; Taylor B; Alexander N; Joyce DF; Faux GI; Lin Y; Shteyn V; Orkoulas G
    Bioresour Technol; 2018 May; 256():232-240. PubMed ID: 29453049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.
    Huang PH
    Phys Chem Chem Phys; 2015 Sep; 17(35):22686-98. PubMed ID: 26256825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.
    Yang X; Yao S; Yu M; Jiang JX
    Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of nitrogen enriched nanostructured carbon adsorbents for CO2 capture.
    Goel C; Bhunia H; Bajpai PK
    J Environ Manage; 2015 Oct; 162():20-9. PubMed ID: 26217886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption energies for a nanoporous carbon from gas-solid chromatography and molecular mechanics.
    Rybolt TR; Ziegler KA; Thomas HE; Boyd JL; Ridgeway ME
    J Colloid Interface Sci; 2006 Apr; 296(1):41-50. PubMed ID: 16168430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.