These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 37511222)

  • 1. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome.
    Iazzi M; Sadeghi S; Gupta GD
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted proteomic quantitation of the absolute expression and turnover of cystic fibrosis transmembrane conductance regulator in the apical plasma membrane.
    McShane AJ; Bajrami B; Ramos AA; Diego-Limpin PA; Farrokhi V; Coutermarsh BA; Stanton BA; Jensen T; Riordan JR; Wetmore D; Joseloff E; Yao X
    J Proteome Res; 2014 Nov; 13(11):4676-85. PubMed ID: 25227318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics and Metabolomics for Cystic Fibrosis Research.
    Liessi N; Pedemonte N; Armirotti A; Braccia C
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease.
    Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L
    J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic and ionomic profiling reveals significant alterations of protein expression and calcium homeostasis in cystic fibrosis cells.
    Ciavardelli D; D'Orazio M; Pieroni L; Consalvo A; Rossi C; Sacchetta P; Di Ilio C; Battistoni A; Urbani A
    Mol Biosyst; 2013 Jun; 9(6):1117-26. PubMed ID: 23609890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator.
    Collawn JF; Fu L; Bebok Z
    Expert Rev Proteomics; 2010 Aug; 7(4):495-506. PubMed ID: 20653506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins.
    Guggino WB
    Proc Am Thorac Soc; 2004; 1(1):28-32. PubMed ID: 16113408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular interactions and ion transport in cystic fibrosis.
    Guggino WB; Banks-Schlegel SP
    Am J Respir Crit Care Med; 2004 Oct; 170(7):815-20. PubMed ID: 15447951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFTR processing, trafficking and interactions.
    Amaral MD; Hutt DM; Tomati V; Botelho HM; Pedemonte N
    J Cyst Fibros; 2020 Mar; 19 Suppl 1():S33-S36. PubMed ID: 31680043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function.
    Zhang S; Shrestha CL; Kopp BT
    Sci Rep; 2018 Nov; 8(1):17066. PubMed ID: 30459435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the internalization pathways for the cystic fibrosis transmembrane conductance regulator.
    Bradbury NA; Clark JA; Watkins SC; Widnell CC; Smith HS; Bridges RJ
    Am J Physiol; 1999 Apr; 276(4):L659-68. PubMed ID: 10198364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.
    Pankow S; Bamberger C; Calzolari D; Martínez-Bartolomé S; Lavallée-Adam M; Balch WE; Yates JR
    Nature; 2015 Dec; 528(7583):510-6. PubMed ID: 26618866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC).
    Qadri YJ; Cormet-Boyaka E; Rooj AK; Lee W; Parpura V; Fuller CM; Berdiev BK
    J Biol Chem; 2012 May; 287(20):16781-90. PubMed ID: 22442149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeleton and CFTR.
    Edelman A
    Int J Biochem Cell Biol; 2014 Jul; 52():68-72. PubMed ID: 24685681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A foetus with cystic fibrosis - To treat or not to treat?
    Padmakumar N; Khan HS
    Respir Med Res; 2023 Jun; 83():101006. PubMed ID: 37037055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl
    Marunaka Y
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28805732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalized medicine in CF: from modulator development to therapy for cystic fibrosis patients with rare CFTR mutations.
    Harutyunyan M; Huang Y; Mun KS; Yang F; Arora K; Naren AP
    Am J Physiol Lung Cell Mol Physiol; 2018 Apr; 314(4):L529-L543. PubMed ID: 29351449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channels as targets to treat cystic fibrosis lung disease.
    Martin SL; Saint-Criq V; Hwang TC; Csanády L
    J Cyst Fibros; 2018 Mar; 17(2S):S22-S27. PubMed ID: 29102290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.