These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 37511335)
1. Dual Targeted Nanoparticles for the Codelivery of Doxorubicin and siRNA Cocktails to Overcome Ovarian Cancer Stem Cells. Chen L; Luo J; Zhang J; Wang S; Sun Y; Liu Q; Cheng C Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511335 [TBL] [Abstract][Full Text] [Related]
2. Pulmonary Codelivery of Doxorubicin and siRNA by pH-Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. Xu C; Wang P; Zhang J; Tian H; Park K; Chen X Small; 2015 Sep; 11(34):4321-33. PubMed ID: 26136261 [TBL] [Abstract][Full Text] [Related]
3. Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer. Yang X; Iyer AK; Singh A; Milane L; Choy E; Hornicek FJ; Amiji MM; Duan Z Pharm Res; 2015 Jun; 32(6):2097-109. PubMed ID: 25515492 [TBL] [Abstract][Full Text] [Related]
4. A Novel Therapeutic siRNA Nanoparticle Designed for Dual-Targeting CD44 and Gli1 of Gastric Cancer Stem Cells. Yao H; Sun L; Li J; Zhou X; Li R; Shao R; Zhang Y; Li L Int J Nanomedicine; 2020; 15():7013-7034. PubMed ID: 33061365 [TBL] [Abstract][Full Text] [Related]
5. Reduction sensitive nanocarriers mPEG-g-γ-PGA/SSBPEI@siRNA for effective targeted delivery of survivin siRNA against NSCLC. Chen L; Wang S; Liu Q; Zhang Z; Lin S; Zheng Q; Cheng M; Li Y; Cheng C Colloids Surf B Biointerfaces; 2020 Sep; 193():111105. PubMed ID: 32417465 [TBL] [Abstract][Full Text] [Related]
6. Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. Wang D; Xu X; Zhang K; Sun B; Wang L; Meng L; Liu Q; Zheng C; Yang B; Sun H Int J Nanomedicine; 2018; 13():187-198. PubMed ID: 29343957 [TBL] [Abstract][Full Text] [Related]
7. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Zou S; Cao N; Cheng D; Zheng R; Wang J; Zhu K; Shuai X Int J Nanomedicine; 2012; 7():3823-35. PubMed ID: 22888237 [TBL] [Abstract][Full Text] [Related]
8. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Sun M; Yang C; Zheng J; Wang M; Chen M; Le DQS; Kjems J; Bünger CE Acta Biomater; 2015 Dec; 28():171-182. PubMed ID: 26415776 [TBL] [Abstract][Full Text] [Related]
9. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Yang X; Iyer AK; Singh A; Choy E; Hornicek FJ; Amiji MM; Duan Z Sci Rep; 2015 Feb; 5():8509. PubMed ID: 25687880 [TBL] [Abstract][Full Text] [Related]
10. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Liu Y; Qiao L; Zhang S; Wan G; Chen B; Zhou P; Zhang N; Wang Y Acta Biomater; 2018 Jan; 66():310-324. PubMed ID: 29129789 [TBL] [Abstract][Full Text] [Related]
11. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. Meng H; Mai WX; Zhang H; Xue M; Xia T; Lin S; Wang X; Zhao Y; Ji Z; Zink JI; Nel AE ACS Nano; 2013 Feb; 7(2):994-1005. PubMed ID: 23289892 [TBL] [Abstract][Full Text] [Related]
12. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Lin CW; Lu KY; Wang SY; Sung HW; Mi FL Acta Biomater; 2016 Apr; 35():280-92. PubMed ID: 26853764 [TBL] [Abstract][Full Text] [Related]
13. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Ma X; Teh C; Zhang Q; Borah P; Choong C; Korzh V; Zhao Y Antioxid Redox Signal; 2014 Aug; 21(5):707-22. PubMed ID: 23931896 [TBL] [Abstract][Full Text] [Related]
14. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Dong DW; Xiang B; Gao W; Yang ZZ; Li JQ; Qi XR Biomaterials; 2013 Jul; 34(20):4849-59. PubMed ID: 23541420 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. Cao Y; Huang HY; Chen LQ; Du HH; Cui JH; Zhang LW; Lee BJ; Cao QR ACS Appl Mater Interfaces; 2019 Mar; 11(10):9763-9776. PubMed ID: 30776886 [TBL] [Abstract][Full Text] [Related]
16. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Ma X; Zhao Y; Ng KW; Zhao Y Chemistry; 2013 Nov; 19(46):15593-603. PubMed ID: 24123533 [TBL] [Abstract][Full Text] [Related]
17. Tumor microenvironment dual-responsive core-shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. Wang T; Yu X; Han L; Liu T; Liu Y; Zhang N Int J Nanomedicine; 2017; 12():4773-4788. PubMed ID: 28740384 [TBL] [Abstract][Full Text] [Related]
18. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier. Li JM; Zhang W; Su H; Wang YY; Tan CP; Ji LN; Mao ZW Int J Nanomedicine; 2015; 10():3147-62. PubMed ID: 25960653 [TBL] [Abstract][Full Text] [Related]
19. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Wu Y; Zhang Y; Zhang W; Sun C; Wu J; Tang J Colloids Surf B Biointerfaces; 2016 Feb; 138():60-9. PubMed ID: 26655793 [TBL] [Abstract][Full Text] [Related]
20. Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery. Wu M; Li J; Lin X; Wei Z; Zhang D; Zhao B; Liu X; Liu J Biomater Sci; 2018 May; 6(6):1457-1468. PubMed ID: 29770812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]