BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 37511393)

  • 1. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions.
    Allagulova CR; Lubyanova AR; Avalbaev AM
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress.
    Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S
    Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review.
    Hosseinifard M; Stefaniak S; Ghorbani Javid M; Soltani E; Wojtyla Ł; Garnczarska M
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment.
    Paul S; Roychoudhury A
    Physiol Plant; 2020 Feb; 168(2):374-393. PubMed ID: 31479515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses.
    Singh A; Rajput VD; Lalotra S; Agrawal S; Ghazaryan K; Singh J; Minkina T; Rajput P; Mandzhieva S; Alexiou A
    Environ Geochem Health; 2024 Apr; 46(5):148. PubMed ID: 38578547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide.
    Goyal V; Jhanghel D; Mehrotra S
    Physiol Plant; 2021 Apr; 171(4):896-908. PubMed ID: 33665834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on nitric oxide and its benign role in plant responses under metal stress.
    Sahay S; Gupta M
    Nitric Oxide; 2017 Jul; 67():39-52. PubMed ID: 28456602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in tolerance of plants to abiotic stress.
    Siddiqui MH; Al-Whaibi MH; Basalah MO
    Protoplasma; 2011 Jul; 248(3):447-55. PubMed ID: 20827494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance.
    Bhagat N; Raghav M; Dubey S; Bedi N
    J Microbiol Biotechnol; 2021 Aug; 31(8):1045-1059. PubMed ID: 34226402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species and Abiotic Stress in Plants.
    Gechev T; Petrov V
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants.
    Wei L; Zhang J; Wang C; Liao W
    Plant Physiol Biochem; 2020 Feb; 147():161-171. PubMed ID: 31865162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis.
    Foresi N; Mayta ML; Lodeyro AF; Scuffi D; Correa-Aragunde N; García-Mata C; Casalongué C; Carrillo N; Lamattina L
    Plant J; 2015 Jun; 82(5):806-21. PubMed ID: 25880454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of abiotic stress tolerance in plants by endophytic microbes.
    Lata R; Chowdhury S; Gond SK; White JF
    Lett Appl Microbiol; 2018 Apr; 66(4):268-276. PubMed ID: 29359344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress.
    Rhaman MS; Imran S; Karim MM; Chakrobortty J; Mahamud MA; Sarker P; Tahjib-Ul-Arif M; Robin AHK; Ye W; Murata Y; Hasanuzzaman M
    Plant Cell Rep; 2021 Aug; 40(8):1451-1469. PubMed ID: 33839877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citric Acid-Mediated Abiotic Stress Tolerance in Plants.
    Tahjib-Ul-Arif M; Zahan MI; Karim MM; Imran S; Hunter CT; Islam MS; Mia MA; Hannan MA; Rhaman MS; Hossain MA; Brestic M; Skalicky M; Murata Y
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avenues of the membrane transport system in adaptation of plants to abiotic stresses.
    Vishwakarma K; Mishra M; Patil G; Mulkey S; Ramawat N; Pratap Singh V; Deshmukh R; Kumar Tripathi D; Nguyen HT; Sharma S
    Crit Rev Biotechnol; 2019 Nov; 39(7):861-883. PubMed ID: 31362527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation.
    Wei L; Zhang M; Wei S; Zhang J; Wang C; Liao W
    Environ Pollut; 2020 Apr; 259():113943. PubMed ID: 32023797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.