BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 37511440)

  • 21. Recent Advances in the Control of Clinically Important Biofilms.
    Krukiewicz K; Kazek-Kęsik A; Brzychczy-Włoch M; Łos MJ; Ateba CN; Mehrbod P; Ghavami S; Shyntum DY
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review of the biomaterials technologies for infection-resistant surfaces.
    Campoccia D; Montanaro L; Arciola CR
    Biomaterials; 2013 Nov; 34(34):8533-54. PubMed ID: 23953781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and surface immobilization of short anti-biofilm peptides.
    Mishra B; Lushnikova T; Golla RM; Wang X; Wang G
    Acta Biomater; 2017 Feb; 49():316-328. PubMed ID: 27915018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation.
    Xu LC; Siedlecki CA
    Acta Biomater; 2012 Jan; 8(1):72-81. PubMed ID: 21884831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antibiofilm agents and implant-related infections in orthopaedics: where are we?
    Romanò CL; Toscano M; Romanò D; Drago L
    J Chemother; 2013 Apr; 25(2):67-80. PubMed ID: 23684354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent Immobilization of
    Yang S; Tran C; Whiteley GS; Glasbey T; Kriel FH; McKenzie DR; Manos J; Das T
    Langmuir; 2020 Nov; 36(43):13023-13033. PubMed ID: 33079548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices.
    Ramasamy M; Lee J
    Biomed Res Int; 2016; 2016():1851242. PubMed ID: 27872845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement.
    Volejníková A; Melicherčík P; Nešuta O; Vaňková E; Bednárová L; Rybáček J; Čeřovský V
    J Med Microbiol; 2019 Jun; 68(6):961-972. PubMed ID: 31107198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro testing of a first-in-class tri-alkylnorspermidine-biaryl antibiotic in an anti-biofilm silicone coating.
    Ashton NN; Allyn G; Porter ST; Haussener TJ; Sebahar PR; Looper RE; Williams DL
    Acta Biomater; 2019 Jul; 93():25-35. PubMed ID: 30769135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications.
    Swartjes JJ; Sharma PK; van Kooten TG; van der Mei HC; Mahmoudi M; Busscher HJ; Rochford ET
    Curr Med Chem; 2015; 22(18):2116-29. PubMed ID: 25245508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomaterials surfaces capable of resisting fungal attachment and biofilm formation.
    Coad BR; Kidd SE; Ellis DH; Griesser HJ
    Biotechnol Adv; 2014; 32(2):296-307. PubMed ID: 24211473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Novel 3,4-Dihydroxyphenylalanine-Containing Antimicrobial Polymers for the Prevention of Uropathogen Attachment to Urinary Biomaterials.
    MacPhee RA; Koepsel J; Tailly T; Vangala SK; Brennan L; Cadieux PA; Burton JP; Wattengel C; Razvi H; Dalsin J
    J Endourol; 2019 Jul; 33(7):590-597. PubMed ID: 31140304
    [No Abstract]   [Full Text] [Related]  

  • 34. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings.
    Ghimire A; Song J
    ACS Appl Mater Interfaces; 2021 May; 13(18):20921-20937. PubMed ID: 33914499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama.
    Romanò CL; Scarponi S; Gallazzi E; Romanò D; Drago L
    J Orthop Surg Res; 2015 Oct; 10():157. PubMed ID: 26429342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review.
    Rajaramon S; David H; Sajeevan A; Shanmugam K; Sriramulu H; Dandela R; Solomon AP
    Front Cell Infect Microbiol; 2023; 13():1139026. PubMed ID: 37287465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review.
    Priyadarshini E; Kumar R; Balakrishnan K; Pandit S; Kumar R; Jha NK; Gupta PK
    ACS Appl Bio Mater; 2024 May; 7(5):2604-2619. PubMed ID: 38622845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters.
    Francesko A; Fernandes MM; Ivanova K; Amorim S; Reis RL; Pashkuleva I; Mendoza E; Pfeifer A; Heinze T; Tzanov T
    Acta Biomater; 2016 Mar; 33():203-12. PubMed ID: 26804206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials.
    Ramage G; Tunney MM; Patrick S; Gorman SP; Nixon JR
    Biomaterials; 2003 Aug; 24(19):3221-7. PubMed ID: 12763449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.