These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37511504)

  • 1. Magneto-Responsive Textiles for Non-Invasive Heating.
    Józefczak A; Kaczmarek K; Bielas R; Procházková J; Šafařík I
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles.
    Kaczmarek K; Hornowski T; Kubovčíková M; Timko M; Koralewski M; Józefczak A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11554-11564. PubMed ID: 29560717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications.
    Sabale S; Jadhav V; Khot V; Zhu X; Xin M; Chen H
    J Mater Sci Mater Med; 2015 Mar; 26(3):127. PubMed ID: 25690622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced magnetic heating efficiency at acidic pH for magnetic nanoemulsions stabilized with a weak polyelectrolyte.
    Ranoo S; Lahiri BB; Nandy M; Philip J
    J Colloid Interface Sci; 2020 Nov; 579():582-597. PubMed ID: 32623124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids.
    Cazares-Cortes E; Cabana S; Boitard C; Nehlig E; Griffete N; Fresnais J; Wilhelm C; Abou-Hassan A; Ménager C
    Adv Drug Deliv Rev; 2019 Jan; 138():233-246. PubMed ID: 30414493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia.
    Yamamoto Y; Itoh T; Irieda T
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls.
    Tsiapla AR; Kalimeri AA; Maniotis N; Myrovali E; Samaras T; Angelakeris M; Kalogirou O
    Int J Hyperthermia; 2021; 38(1):511-522. PubMed ID: 33784924
    [No Abstract]   [Full Text] [Related]  

  • 8. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia.
    Partanen A; Tillander M; Yarmolenko PS; Wood BJ; Dreher MR; Kohler MO
    Med Phys; 2013 Jan; 40(1):013301. PubMed ID: 23298120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments.
    Rubia-Rodríguez I; Zilberti L; Arduino A; Bottauscio O; Chiampi M; Ortega D
    Int J Hyperthermia; 2021; 38(1):846-861. PubMed ID: 34074196
    [No Abstract]   [Full Text] [Related]  

  • 10. Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy.
    Espinosa A; Reguera J; Curcio A; Muñoz-Noval Á; Kuttner C; Van de Walle A; Liz-Marzán LM; Wilhelm C
    Small; 2020 Mar; 16(11):e1904960. PubMed ID: 32077633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications.
    Myrovali E
    ACS Appl Bio Mater; 2022 Jun; 5(6):2598-2607. PubMed ID: 35580307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy.
    Zhao S; Hao N; Zhang JXJ; Hoopes PJ; Shubitidze F; Chen Z
    J Nanobiotechnology; 2021 Mar; 19(1):63. PubMed ID: 33648501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application.
    Safarik I; Prochazkova J; Schroer MA; Garamus VM; Kopcansky P; Timko M; Rajnak M; Karpets M; Ivankov OI; Avdeev MV; Petrenko VI; Bulavin L; Pospiskova K
    ACS Appl Mater Interfaces; 2021 May; 13(20):23627-23637. PubMed ID: 33988970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.
    Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A
    Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yarn-Level Simulation of Hygroscopicity of Woven Textiles.
    Mao A; Dong W; Xie C; Wang H; Liu YJ; Li G; He Y
    IEEE Trans Vis Comput Graph; 2023 Dec; 29(12):5250-5264. PubMed ID: 36103450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.